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ABSTRACT

Ir diverse areas of physics and engineering, problems arise
which should properly be described by linear differential equations
vith stochastic coefficients. Methods are developed here for finding
integral expressions for the second-order statfstics (means, correla-
tion functions and power spectrum) of the dependent variable of &n
nth order linear stoctastic differential equation. These expressions
constitute a generalization of the corresponding expressions for
linear time-varying systems to linear randomly time-varying systems.
The kernels of the integral expressions for the gtatistical measures
of the solution can be interpreted as stochastic Green's functions.

In general, expressions for the second-order statistics of the
solutfon of either ordinary or partial linear differential equations
with stochastic coefficients requirss knowledze of all the moments of
stochastic coefficients. An exceptional case is that in which the

stochastic coefficients are Gaussian processes. Then the knowledge

of rhe second-order statistics i{s sufficient for tie complete solution.

It is assumed that the coefficients of the differential equation

are separable irnco deterministic and stochastic parts, and the solution

for the deterministic part is known. 1In the ccse of a stochastic
ordinary differercial equation, the problem now becomes a problem of
solving a Volterra integral equation with a stochastic kernel. Two
methods of solution of r..1s integral equation are considered: the

Neumann seties expansion method and the degenerate kernel method.

A theorem which gives sufficient conditions for the uniform convergence

of the Neumann series expansion Is proved. The proof of this theorem,

and the actual Neumann series expansion, 1s shown to be facilitated
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if the nth order differential equation is expressed in the stete-space
notation of control system theory.

The uniform convergence of the Neumann series expansion ailows
the solution of the stochastic differential equation to be expressed
in terms of the resolvent kernel of the stochastic integral equationm.
The ensemble average and tha covariance function of the sclution are
expressed in terms of the corresponding statistical measures of the
resorent kernel and of the ipput process. The statistical measures
of the resolvent kernel are functions of both the Green's function
of the deterministic operator and the appropriate statistical measures
of the stochastic coefficients.

Both the Neumann series iteration and degenerate kernel approxi-
mation are applied to the investigation of the propagation of waves
in a randomly space- and time-varying medium. Aimost all the previous
work has used the so-called quasimonochromazic assumption which
essentially neglects the time variation of the wedium. Such an zssump-
tion has been avoided in this disserta&idu and thereby some consequences
of this assumption discovered. The source and the stochastic medium
are assumed to be wide-sense stationary stochastic processes. All the
stochastic quantities of the scalar wave equation are expressed by
their spectral representation, and the equation is solved for the
spectral representation of the scalar wave function. From the spectral
representation of the scalar wave function, its power spectral density
and mutual coherence functions can be found. Both the Neumann series
expansion and the degenerate kernel approximation demonstrate the

spreading of the power spectrum of the source by the time-varying




mediwn, In the Neumann series expansion, even the first-order approxi-

maf ion shows the spreading of the power spectrum. Higher order
approximations show further spreading of the power spectrum. Higher
order approximations also show that the solution contains, in addirion

to the wide-sense stationary terms, terms which are no longer wide~

sense gtationary.
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CHAPTER I

INTRODUCTION

1.1 General Statement of the Problem

Many problems of interest to electrical engineers are described
by linear differential equations with scochastic* coefficients. Often
the randomuess of the coefficients has been neglected because no
widely applicable and tractable mathematical methods have been known
for solving such problems. 1In this dissertation, an nth order linear

differential equation with such stochastic coefficicals
foy(t,w) « x(t,w) (1.1)

is considered. f is aszumed to be & sum of an invertible deterministic
operator L and a stochastic operator R. The differential operator [

. ) *h

is defined on some domain teT and a rrobability space ({1,2,P). L

can be either an ordinary or a partial difiervential operator. Our
approach to the solution of (1.1) is to determine a '"stochastic Green s
function' (Adomian, 1961, 1963, 1964) for the linear stochastic opers-
tor  in terms of a deterministic Green's function tor L and the

appropriate "statistical measurcs" of the stochastic coefficients.

The term “statistical measures” is used 85 & general term for the

quantities that characterize stochastic processes. For example,

*
Random functions. Precise delfiritions sre given in Chapter 11,
section 2.2.

*k
Probabhility spaces are also defined io gection 2.2.
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expectationg, ov averages, speclial densities avd correlation
functions axe statistical mrasures. The {1 *agral kernel which
expreases the desired statistical measure of an outpul process in
terms of the correaponding statistical meanure ot an fnnut and appro-
priate siatistical mrasutes of the stochastic corlticients ix called
the "stochastic Grteen's function”. In this thests, an 1tetative
method {Adowmian, 1967) tor the constiuction of atochastic Qreen's

functions is fuvestigated and applied to vhyvefcal pvblems.

1.2 Spapilfcapee ot the Pioblem

Diftevential equations with tandomly time-varviog coelticients
ariac taturslly fn many practical ntoblems.  Apalvais ol seemteghy
simple gvateme ol ten produces such ditirersnitar equations.  Fuoi
example, to tind the cutient drawn ftom a gevejator with tantte
internal tmpedance operating nto a tandumly trne-varving load
impedance one mual solve a ditletential ecquation with stochastad
cosfficiente. A large intetvonnedled nowel syvslem tn cleatly =
randwly time-vatrving vetwork Tt behavior aod iostantaneous
states are only prodictable 1o & statistios]l xenae Many contr ol
system prtoblems have rtandomly Cime-varying vatameters . Adant e
centiol syatems ate tvptoal examples. 1o other cares, syvslom pata-
meterts are modulated by 1avdom distiabances . The combipalion ot
complexity and uncertairty tn a teal problem ollen makes 1t vecesrralny
Lo use stochaatic analvets. Urcertainty sy tesull from unavoildable
experimental erttuts 10 Jetertmining the parametets of the 1eal svslem
Or 1t my vesult from lack ot priot xnowlewge ot the conditione undet

which & svstem mus! oOpetate.  In the latter vase, statistical avalvaie
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e preterable to the "worst case avalvsis', because the rtesulis of
the wotst (ase analvsics ate often untealistically peariminttc

In gome cases 1 as preterablie to avalvee 8 complex determiniet tc
Evelem as 1t 1t wele a sianplet siochastic svatem. For example a
mavv-bady problem mav be attacned by conrtdetring the intersction of
the predominatiog totces ar deterministic torces and the totality ot
all smallet toroes as 1tandom totces Note that the xum ot ail the
emall forces my not be negligttie compated to the latger torces, even
1t cach 1todividual teree by tselt 18 vegligtble I electiacal
engtuectivg, thete ate avalogous srohlems, such ap complicated negwork
problems which woee ld teguite simultaneous xolution of A large numbe:
ot loop o e eguat rores Hete, alsan, the comblexity can be traded
{ lH\‘\i\\mn‘._\.\

e additioe te the above eaamples, avother taportant lase ot
ot deas tvelvaeg stochastie ditterertial eguatiors aytsex in almos?
Al wave nrensgattor orebiiens The precagaticn of cledtrommgeetiy
waver fhuos gh the alocsnhere, tovosahere, olazmas, tutbelevt miatutes
AoRarcs aed watet vapor ate aoie exanples The plopagation of sound
wave s (htough water weith vatvieg teeperatute grtadients, mictostructute
O tuthulevoe, tesuits o alochasty scaiar wave eguatiopra Thas the
st hdelte wave vyualtors dle O rlviert (0 oponat, tader and comuny -
Ao e giteot s Partiheimote, cionet uederstar divg ot stos hastac
Wale equaliore ey o e add L tioonal tereatch tools o undetatanding
vatiour tandom media

To sdeation 1o the abovemer i iored exnamoics sl haslin operstor
cquetiors Are gigtiticant v oseverai tucdamcntal problems ot oh oL

Ivosoate ot thie, the atovhaste ovetaior aspraach has vol heer widely
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expectations, or averages, spectral densities eand correlation
functions are statistical measures. The integral kesnel which
expresses the desired statistical measure of an output process in
terms of the corresponding statistical measure of an input and appro-
priate statistical measures of the stochastic coefficients is called
the "stochastic Green's function". In this thesis, an iterative
method (Adomian, 1967) for the construction of stochastic Green's

fuoctions is investigated and applied to physical problems.

1.2 Significance of the Problem

Diffevential equations with rardomly time-varying coef..:ients
arise naturally in many practical problems. Analysis of seemingly
simple systems often produces - .ch d' “ferential equations. For
example, to find the current drawn from a generator with finite
internal impedance operating into a randomly time-varying load
impedance one must solve 8 differential equation with stochastic
coefficients. A large interconnected power system {s clearly a
randomly time-varying network. Its behavior and instartaneous
states are cnly predictable in a statistical sense. Many control
system probloms have randomly t’'me-varying perameters. Adaptive
control systems are typical exsmples. In other cases, system para-
meters are modulated by random disturbances. The comt Ination of
complexity and uncertainty ir a real problem often makes it mecessary
to use stochastic analysis. Ui-ertainty may result from unavoidable
experimental errors in decermining the parameters of the real system
or it may vecult from lack of prior knowledge of the condi..ons under

which a rystem amust operate. In the latter case, statistical analysis




is preferable to the 'worst case analysis', because the results of
the worst case analysis are often unrealisticsily pessimistic.

In some cases it is preferable to analyze a complex deterministic
system 85 if it were & simpler stochastic system. For example a
many-body problem may be attacked by considering the interaction of
the predominating forces as deterministic forces and the totality of
all smaller forces as random forces. Note that the sum of all the
small forces may no. be negligible compared to the larger forces, even
if each incividual force by itself is negligible. In electrical
engineering, there are analogous problems, such as complicated network
problems which would require simultsneous solution of & large number
of lcop or rode equations. Here, also, the complexity can be traded
for randomness.

In addition to the above examples, another important class of
problems invoiving stochastic differential equations arises in almost
all wave propagation problems. The proragation of electromagnetic
wavee through the atmosphere, ionosphere, plasmas, turbulent mixtures
of gases and water vapor are some examples. The propagation of sound
waves through water with varying temperature gradients, microstructure
or turbulence, results in stochastic scalar wave equations. Thus the
stochastic wave equations sre of interest to sonar, radar and communi-
cation engineers. Furthermore, pioper understanding of stochastic
wave equations may provide additionasl research cools for understanding
various random media.

In addition to the abovementioned examples stochastic operator
equations are significant in several furndumental problems of physics.

In spite of this, the stochastic operator approach has not been widely

ok I S AN h
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used because of mathematical diff .ulties. For this reason it s
important to develon tractable mathematical rethods for solving
stochastic differential equarions which arise in the prrotlems of
physics and engineering. According to the distinguished mathematician
Solomon Lefschetz (1967), the study of stochastic differential
equations is one of the fertile but noorly charted fields of mathe-
matical reseerch.

Formulation of physical problems by means of stochastic
differential equations is a generalization of the corresponding
formulation by means of deterministic differential equations.
Conversely, one may consider all the coefficients of any differentisl
equsation to be rsndom variables or functions; then, when the randomness
of the coefficients vanishes, the problem reduces to the deterministic
case, i.e., the random coefficierts are replaced with their mean
values. Problems which need to be investigated include the determin-
ation of whether randomness can be neglected in a given problem and
what errors may result if this is done. A realistic approach to
such an investigation would be to introduce the coefficierc ar a
random variable, obtain the '"random solution" of the differential
equation, and then study its statistical properties. The general

approach to this problem is discussed later in this chapter.

1.3 Previous Related Work

Before reviewing the previous related work in the theory of
stochastic equations, some terminology needs to be clarified. The
solution of a differential equation can be raudom for any of three

reasons.
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1) Initial or boundary conditions are random.
2) Forcng functions are stochastic processes.
3) The coefficients of the differential equation are stochastic

processes.

In the first two cases, the differential equation itself is
deterministic and the solution of the differential equation can be
expressed in terms of a deterministic Green's fupction and random
forcing functions, or random initial and boundary conditions. The
random initisl and boundary conditions may simply be interpreted as
random forcing functions in the construction of the Green's function.
Fou this reason, the fivst two cases are not really stochastic differ-
ential equations. Two stochastic ocesses are simply related by
a de ermir®~tic Green's function. In this dissertation, the term
"stochastic differential equation' means a differential equation
with coefficients which are stochastic processes. Similarly, a
stochustic integral equation is an integral equation with a stochastic
kernel. In general, a '"stochastic operator'" is an operator with
stochastic parameters.

For the first two cases, an excellent review of the solution of
differencial equations with random initial conditions and rixdom
forcing functions has been made by R. Syski (1967). Other useful
survey papers are by Kampe de Férriet (1965) and an older one by
Edwards and Moyal (1955). Syski (1967) also reviews other special
topics such as Brownian mot:.on problems or Wiener-Levy processes.
Important mathematical contributions in connection with the Wiener-

Levy processes have been made by Kolmogorov, Feller, Levy, Doob,

LR
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Kac, It6 and others. Syski also reviews the work that has been done

by 1t8 and Doob in characterizing Markoff diffusion processes. The
computation of the oitput spectral density and the correlation function
for linear time-ipnvariant systems has been thoroughly discussed in
standard texts (Laning and Batzin, 1956; Davenport and Root, 195§,

and Papoulis, 19€5) and needs no further comment.

Among the other works in this line, A. D. Jacobson (1967) in two
recent papers analyzes second-order coherence properties of electro-
magnetic fields which are produced by random sources of arbitrary
spectral width. His principal field gquantity, "the dyacdic field
spectral density" is interpreted from both a statistical and a
physical standpoint.

Also, random boundary conditions have been used by D. E. Barrick
{1965) to study backscattering of electromagnetic waves from rough
surfaces. The starting point of his analysis is the Chu-Stratton
vector integral equation. He obtains closed form sclutions for the
backscattering cross sections for - class of rough surfaces with
several different statistical models. Barrick's dissertation also
contains an extensive list of references on backscattering of
electromagnetic wave. fr n rough surfaces. Another random boundary
value problem which has been studi d by several workers is the
backscattering of sound waves from turbulent sea surface (Eckart, 1953,
and Clay, 1960).

The study of linear differential equations with stochastic
coefficients (or, in the more general case, linear stochastic operators)
has proceeded along two lines. The first one, explicit solutions of

specific problems of physics and engineering have been pursued by

Wi




Roserbloom (1954}, Tikhonov (1958), Samuels and Erdingen (1959),

Astyom (19653, Cheipanov (1962), Adomian (1961, 1963, 1964) and others.
The most generai approach to the subject has been taken by Adomian.

The second approach has been based on probabilistic functional analysis
and has been concerned with proving existence and uniqueness theorems.
Work along this line has been done by Hanf (1961), Spatek (1955) and
Bkorucha-Reid (1960, 1964, 1965). As the theory of linear stochastic
operators matures, it is expected that the two lines of research will
merge.

Samuels and Eringen (1959) treated the problem of an nth orvex
linear differential equation with random coefficients. They restricted
their attention to differential equations with (i) small randomly
varying parameters, (ii) slowly varying random coefficients, and
({i1) only one random coefficient. They applied their mathematical
methods to an RLC circuit with a randomly varying capacitor and to
the analysis of dynamic instability of an eleastic bar subject to
a randomly time-varying axial force. They used a perturbation
method to solve the problem. Tikhonov (1958) has calculated the
statistics of the solution of a first-order, linear, differential
equation with a single stochastic coefficlent and a stochastic forcing
function. He assumed that the coetficient and forcing function were
corrclated, stationary and normally distributed. Tikhonov points out
that sometimes it is possible to analyze the effects of a random
forcing function on ponlinear systems by considering the solution of
the abovementioned linear differential equation. Astrom (1965) also
considers a first order stochastic differential equation with

correlated forcing function and coetticient. This problem arose in the
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study of control systems subject to random distrubances. His
analysis emphasized the probability distributions, where Tikhonov's
work stressed correlation ifunctions. Caughey and Dienes (1962)
considered an nth order linear differential equation with the forcing
function and lowest order coefficient being white-noise prccesses.
Syski (1967) reviews several other special differential equations
with stochastic coefficients that have been solved. Other special
problems have elso been solved. For example, Gibson (1967) obtained
a solution to a partial differential equation with random coefficients.
The differential equation arcse in calculation of interaction of
electromagnctic wavcs and the random fluctuation of electron density
in the wake of a reentry vehicle. The coefficients of the equation
were cssumed to be identically distributed Gaussian random variables.
In addition to the abovementioned methods, hierarchy techniques
have been widely used by physicists for solution of differential
equations with stochastic coefficients (Adomian, 1967; Adomian, 1968;
Keller, 1964; Richardson, 1964; and Kraichnan, 1962). In the hierarchy
methods, the differentia! equations Ar- averaged before attempting
to solve them. But by doing this, the equation for the average
(first moment) involves a2 higher moment of the unknown function. One
finds that the equation for a moment of any order involves moments of
higher order. This procedure results in an {nfinite system of
equations which must be solved simultaneously. To get a finite set
of equations, unverified and often unjustified "closure"
spproximations are made. These closure approximations are the
basis for what Keller (1964) c2lls "dishonest'" methods [or solving

stochastic differential equations. The difficulty with the hierarchy




method is essentially that the average of the solution of a
differential equation with stochastic coefficients i{s not necessarily
the same as the solution of the averaged equation. Various closure
approximations simply hide this difficulty. It has been shown by
Adomian (1967, 1968) that hierarchy methode are velid only under
special cases, such as esmall randomness. Even then it is often
preferable to use approximate methods whoge validity can be verified
and wherein errors can be evaluated.

An importent application of stochastic differential equaticn
theory is the study of wave propagation in randomly turbulent media.
Wave propagation in random media hag bheen etudied tv ¥rller (13045,
Hoffman (1964, 1959), Twersky i1964), Wheelon (1959), Bugnolo (1959,
1961), Lax (1951), Chernov (1960), Tatarski (1961}, Mintzer (1953,
1954), Booker and Gordon (1950) and Booker {(1959). More recent papers
have been published in the special issue on partial coherence of IEEE
Transactions on Antennas and Propagation (1967). Since the books by
Chernov (1960) and Tatarek! (1961) and the review article by Wheelon
(1959) contain excellent reviews of the older literature and extensive
bibliographies, only orief remarks are needed here. Nearly all
studies to date of wave propagation irn random medis have assumed
harmonic time dependence. In many cases, this "qussimonochromaticity"
agsumption is clearly not valid; in other cases, it needs verification.
Examples of the first case are wave propagation through energetic
media and interaction of electromagnetic waves in excited wmedis.

Also, small rapdomness 1is usually asssumed from the outset, for
example, in the derivation of the wave equation. It would be

desirable to have a mechod where one applies restrictive assumptions
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as late in the problem as feasible, so that it becomes clear exactly
where the restrictive assumptions are needed and how they can be
removed, if required for a particular problem. For these reasons,
it is desirable to investigate wave propasgation in the stochastic
media from a more general point of view.

The rigorous mathematical background for the theory of stochastic
equations has been reviewed in a survey paper by bharucha-Reid (1964).
He presents the basic definitions and theorems from probabilistic
functional enalysis that are used in the theorv of rardom equations.
The paper also reviews different classes cf random equations such as
random algebraic equations, random difference equations, random
differential equations, and random integral equations. In a receuc
Ph. D. thesis, Anderson (1967) has studied in great detail Fredholm
integral equations with stochastic forcing functions. Strand (1967)
has studied existence and uniqueness of the ordinary stochastic
differential equations. Goldstein (1967) has studied the sample
functlon behavior of the second-order ItO processes. The operator
theoretical treatment of this problem leads nonlinear semigroups
of operators. 1to equations are very special stochastic differential
equations and are not considered here.

The most general approach to stochastic differential equations
or, in general, to stochastic operator equations, has been taken by
Adomian (1961, 1963, 1964, 1967). He has developed the concept of
a "s-ochastic Green's function". The fntegral kernel which expresses
the deaired statistical measures of the solution in terms of the
corresponding statistical measure of the input and sppropriate statis-

tical measures of the stochastic coefficients is called the "'stochastic
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Green's function'". The term ''statistical measure” is used as a

general term for the quantitiee that characterize stochastic processes.
Expectations, spectral densities, and correlation functions are the
statistical measures which are most widely used in physical problems.
In the view of the fact that Green's functions have been widely used

in applied mathematics, mathematical physics, linear system analysis,
and electroma, etic theory, it can be expected that the concept of a
stochastic Green's function may provide the unifying concept for a
large number of diverse problems that are described by stochastic
differential equations. The major problem in solving equations by
means of stochastic Green's functions, as is the case with the ordinary
Green's functions, is the problem of constructing the Green's function.
The central protlem cof this dissertation is the construction and
interpretatior of stochastic Green's functions for various problems

that arise in electrical engineering.

1.4 Ceneral Method of Solution and Specitic Statement of the Problem

The ultimate gosl of the solution of a stochastic differentisl
equation is to express tihe slatistical meacures of the dependent
variable in terms of the statistical measures of the torcing function
and the stochastic coefficients. One approach tc the problem is to
determine all the orders ot the multivariate probebility distribulions
of the dependent variable. This gives the complete statistical
descripiion of the dependent variable ard hence 18 the complete
solution of iLhe problem. This method ts correct 1in principle, but
16 too difficult to be useful for most practical problems. In most

applications, one is primatily interested in correlation functions,

e g
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spectral densities and mean values. These statistical measures can
be computed from multivariate probability distributions but, in view
of the complexity of the problem, it is desirable to seex expressions
for the desired statistical measures of the dependent variable in
terms of the same statistical measures of the f.rcing function and
appropriate statistical measures of the stochastic coefficients.
Another reason to avoid the intermediate steps is that, for the
calculation of the multivariace probability distribution function,
one needs to know all the multivariate probability distribution
functions of the forcing function and stochastic coefficients. This
information 18 not as frequently available as the second-order
statistics (correlatior functions, spectral densities, etc.). One
needs to resort to more complicated experiments or unjustitied assump-
tions to obtain the higher order irfcormation which s disregarded
later anyvay. Thus, 8 cleaner method is one which eliminates the
intermediate steps of obtaining multivariate probability distributions.
Because of the difficulty of solving difterential equations with
stochastic coefficients, it {s desirable to have a metnod which takes
advantage of known solutions of the corresponding deterwinistic
equation. To this end, one would scek an expression for the
stochastic Green's function in terms of the known deterministic
Green's function function. With this as motivstion, the centra!
problem of che discerta:ion can be tvephrased in more precise terwss
as follows: Ler I be an nth order stochsstic difterential operator

defined on son. domain tel and a probability space (i:,2,P)
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n
- v
J e av(t,w) — . (1.2)
L/ dt
ve()

where a (t,w) are time “siy.;« random functions, teT and well on

%
(§6,2,P). Let the operator [ be :eparable i{nto the sum of 8 deter-
ministic operator L and a random operator R. In particular, let

the vandom coefficients be of the form

a (t,w) = B () +q (t,w) , (1.
Y v v

where Bv(z) are deterministic tunctions of time and av(c,u) are
stochastic processes | ﬂy(t) can be either the ensemble average

of n\(L,w) Or some otner convenient tunction of time . For sxampl
it may be possible to choose Eh(c) f0 that the inversion of the

v

deterministic ditferential operator L is simplif.ed. It 1s sssumed
that L is an invertible differential operator; that is, the Green's
iunction G(r,r) tor the differentia] operator L {s known or can be
congtructed. One can associate with the operator [ & atochestic

ditferential equation

Sy (t,w) = x(t,w), t¢T and weid on (0Q,%,7) . (1.

3)

€,
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The forcing function x(t,w) can be either deterministic or random.
For greater generality, let it be random. 1t is also aessumed that
x(t,w) is statistically independent of the random coefficients.

The problem is to find integrsl expressions for the statistical
measures of y(v,w) in terms of the same statisticsl measures of
x(t,w) and appropriate statistfical measurrs of the stochastic
coefficients. By the assumption that the Green's function for the
deterministic operator L is known, the stochastic differential
equation (1.4) is converted to a Volterra integral equation with

& stochastic kernel and a stochastic forcing function. The integral
equation can be solved by a Neumann series expsnsion and a rescolvent
kernel can be constructed. The stochastic Green's function can

be expressed in terme of the resolvent kernel of the stochastic
Volterra ir-egral equation. This method of solution hes the following
advantages:

(1) Knowledge of the deterministic Green's function is used

to censtruct the staochastin Green's function.

(1i) An iterative method of solution is used. The previcusly
computed term is used to compute the next term and so on.
Iteration can be stopped as soon as the remainder term
reaches &8 .rescribed value.

The main disadvantage of this method is that a large amount of
labor may be required for the calcilation of the resolvent kernci;
but, on the other hand, note any simplifying assumptions can be made
at places where their effects become clear. The solution of the
stochastic integral equation is simnlified if the kernel of the

integral equation is degenerate. In many cases, the problem of

o el

-
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solving a stochastic differential equacion, with 8 time i{nvariant
deterministic part, reduces to & problem of solving ean integral
equation with a degenerate kernel.

Chapter II contains general mathematical background, definitiong
and terminology which will be used in subsequent chapters. Some
basic concepts from probability thezory and from the theory of
stochastic processes are presented. The last part of Chepter Il
contains a number of definitions and theorems from probabilistic
functional analysis. These theorems give sufficient conditions
for existence of a solution for the stochastic integral and differenti.l
equations. In resding this dissertation, one may go directly to
Chapter IIX without loss of continuity and refer back to Chapter II
for formal definitions and specific results as need arises.

The relations between resolvent kernels of Volterra integral
equations and stochastic Green's functions are discussed in Chapter III.
Both the Neumann serie: expansion and the degenerate kernel method
are used for the construction of the resolvent kernel. 1In both cases,
the computation is simplified if the state space formulation is
used. The use of the state space formulation has the further advantage
that it connects modern control system theory with this work.

In Chapter IV, both the degenerate kernel method and the Neumsnn
series expansion are used to study propagation of a scalar wave
function in a randomly time- and space-varying medium. The statistical
measures of interest acve the power spectral density amnd the coherence
functions of the scalar wave function. The expressions for the
spectral density will reveal the spectral spreading caused by a

randomly time-varying medium. The usual qussimonochromatic

R
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assumption, which is avoided in this thesis, faile to show the
spreading of the power spectrum by the randomly time-varying medium.
Chapter V summarizes the results obtained in this thesis and

discusses possible extensiune to this work.




CHAPTER II

MATHEMATICAL BACKGROUND

2.1 Introduction

The purpose of this chapter is *» establish the general
mathemeticel background for the subsequent chapters, clarify
terminology, give definitions, and to state useful theorems and
inequalities. Since most material is readily avails ‘e in standard
books (Cramér and Leadbetter, 1967; Papoulis, 1965; Pugachev, 1965;
Loéve, 1963; Doob, 1953; Sveshnikov, 1966; and Blanc-Lapierre and
Fortet, 1965) and review papers, (Moyal, 1949) the treatment is
brief and necessarily incomplete. Most of the theoremz are stated
without proofs. First, some of the fundamental concepts f~om the
probability theory and from the theory of stochastic processes are
presented. Probability spaces, probability distributions, random
variables and stochastic processes are defined. 1In the next section,
various moments suclh as expected values (means), correlation functions,
covariance functions and higher momeuts are discussed. A number of
useful inequalities for the moments of stochastic processes are also
presented. Then, in section 2.4, various concepts of stationarity
are defined. The concepts of strict stationarity, wide-sense
stationarity, reducibility to wide-sense stationarity are discussed.
The following section (2.5) deals with the calc. tochastic
processes. The discussion begins with the definitione of various
modes of convergence of the stochastic processes. Interrelations

between these modes of convergence are briefly discussed. Using
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the concept of convergence in the quadratic mean, quadratic mean
continuity, quadratic mean differentiability and integrability are
defined. The convergence of the iterative solutions of stochastic
differential equations can be interpreted according to one of the
modes of convergence of the stochastic processes. In section 2.6,
spectral expansion of the stochastic processes is discussed and the

powsr spectrum of wide-sense stationary stochastic processes is

defined. In the rollowing section the power spectrum of the non-
stationary stochastic processes is defined in terms of a double
Fourier transform. Section 2.8 develops some simple results which

express the expected values and the covariance functions of stochastic

procegses which have been transformed by a linear deterministic

operator. It is also shown that a Gaussian stochastic process
remains Gaussian under linear transformation.

The final section of the chapter presents some definitions and
theorems from probabilistic functional analysis. Probabilistic
functional analysis provides a number of existence theorems for
stochastic integral and differentiel equations.

We use the following convention. If a word is underlined in a
sentence, that sentence serves to define the underlined word. The
reader may go directly to Chaprer III without loss of continuity

and refer back to this chapter as need arises.

i 2.2 Probability Spaces, Random Variables and Stochastic Processes

; Probability theory hes its own terminology which is directly
related to its intuitive background but, as & brench of mathematics,

its concepts are expressible in terms of measure spaces and measurable
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functions. To establish the basic concepts, let us consider a random
experiment E with possible outcomes A,B,.... A,B,... are various
observable events associated with the experiment E. A gure event,
denoted by Q, is an event which always occurs when the experiment E

is performed. An impossible event, denoted by §, is an event which

never occurs as an outcome of E. Both the sure event {l and the
impossible event @ are regarded as observable events. One sure
"event" is the collection of all possible outcomes. For the
processes we are considering that is the only sure event. Thus we
use the symbol ) to denote the whole space of events.

A space 2 with points w, together with a o-fileld ¥ of sets in &,
and a probability measure P(A) defined on the sets A of ¥ constitutes

a probability space denoted by (G,%,P). A field ¥ of w sets is called

a Borel field, or a g-field, if it includes all countable (finite or
enumerable) unions and intersections of its sets. P(A) is said to

define a probability distribution in 1. P(A) 1is a function defined

on all events or sets AeX and it has the following properties:

0 < PA) <1, (2.1a)
P® = 0 , (2.1b)
P@ = 1 , (2.1c¢)

and P(A) 1is countably additive; that is:
P (U A) = \> P(A) , (2.1d)
AR /[ 3

j=1
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for disjoint sets Aj (Aj’\ A, = B for 4+ k). The probability

measure defined in this manner agrees with the usual intuitive
concepts of the probabili*y: the nrobability of an impossible

event is zero, that of a sure event is one, and r(A) is approximately
equal the relative frequency of occurrence of the observable event A
when the experiment E is performed a large number of times.

It is also assumed, for mathematical convenience, that the o-field
¥ is completed with respect to the probability measure P(A). This
means that all subsets of ¥ set. of P-measure zero are adjoined to ¥,
and the smallest c-field, including this extended family of sets, is
formed. The completed o-field has the property that if it includes
a set A which has a P-measure zero, then it also includes every subset
of A which will then also have a P-measure zero. The extension of

P(A) to this completed o-field is called a complete probability

measure. This extension of probability measure defines probabilities

for the events which may not be strictly observable, but this extension
gives additional analytical freedom. Namely, a nrobability measure
18 defined f{or events that are obtained trom the observable event
by any set operations.

In the literature, the probability theory and the measure theory
terms are used interchangeably. The correspondence between some ot

these terms is shown in the fullowing table.
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TABLE 1

RELATIONSHIPS BETWEEN PROBABILITY THEORY
AND MEASURE THEORY

PROBABILITY THEORY MEASURE THEORY
Probability space Normed measure space
Sure event Whole space
Impogsible event Empty set
Event Measurable set
Elementary event Point w belonging to the :
space !
Probability P-measure, normed messure
Almost sure, almost surely, Almost everywhere P,a.e.P. §
a.s8. i
, Random varisble, r.v. Measurable function i
; Expectation, statist.cal average Integral d[\ !

mean, ensemble average, < >

‘é

e s 1
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As staed in Table I, a random variable is a P-measurable function.
Mathemetically the definition of a random variable is simply the
definition of measurability. A function X(w) on fl to R = (-w, +w)

is s2id to be measurable i{f, for every real number a, the set

{wel:X(w< a)

belongs to the o-field ¥ (0-field, measurable sets, events).

The measurable function X(w) 1is called a random varjable.

Probability distributions are defined for all measurable sets or
events. When needed, X(w) may be allowed to become infinite or
even undetermined on an w get of P-measure zero. When the two
random variables x(w) and y(w) are equal with probability one,

written

Px(w) = y(w)] = 1,

they are called equivalent random variables. Equivalent random

variables differ at moat on an w set of P-meagure zero.
When [(w) is & random varisble the probability F(x) = P({ < x)
is & non-decreasing function of the real variable x. F{x) is

continuous to the right, and

lim F(x) = 0 (2.20)
X ¢t -=
lim F{x) = 1 . (2.2b)

X *tw

its




23

The function F(x) is called the distributjon function (or cumulative

distribution function, d.f.) of the random varisble {. The knowledge
of F(x) for all x determines the probability P({eA) for every Borel
set A. A ig a subset of the real line R,

The random variables gl, gz,... gn will jointly induce a
probability in n-dimensional Euclidean space R". The probability
F(xl,xz,...xn) - P(g1 S X gzg;x2,... ¢, < xn) is a pondecreasing
function in each variable xl, xz,...xn, it is continuous on the right

in each variable and

lim F(xl, xz,...xi,..xn) =9 i=1,2,...0, (2.3a)
X, -
i
and
lim F(XI’XZ""xn) -1 . (2.3b)

K, ) Xo,o0 X o
1°72 n

F(xl,xq,...xw) is the multivarjate distributicn functfon (joint

distribution function, j.d.f.) of the random varisbles gl, ;2,3.. gn.
Its knowledge determines the probability assigned to every Borel
set of R" by the n-dimensional diatribution of the §1. The random

veriables Ql. ;,,...gn can be thought of as components of sn

n-dimensions!l random vector

»

The distributiun functjion of the random . »ctor : {s identical with

the multivariste distribution of {ts components.
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Now we turn to a generalization of the preceding concenrts of
random varisables and their distribution functions. That is, we chall
consider an arbitrary family (X{t,w)} of random variables where t
runs through some index set T. If T consists of a single point we
have a single random variahle; a finite T-set corresponds to the
finite family of random variables. When T is an interval of real

numbers, the family {X(t,w):teT] is called a continuoug-parameter

stochestic procesg or a random function. Physical systems subject

to random influences can be described by stochastic processes.
Another way of looking at stochastic processes is the following.

A random veriable X is a set function on the sample space ; that
is, a random varisbie X assigns s number X(w) tc every well. In the
cese of o stochastic process, for every wefl, a function X(t,u) {is
sssigned. Hence, we are desling with an ensemble or a fam!ily of
functions. X(t,w) is often & function of time, but it may very
wail be a functior of any other quantity such as position. With the
preceding discussion as motivation, a rigorous definition of s
stochast'c process is now given. Let a probability space (2,Y,P)
and & parameter set T be given. A gtochastic process is a finite
real valued functloﬁ X(t,w) which, for every fixed teT, is a

mcasurabie function of well. A gtochapti: vecior process is an

n-dimensional vector whose components are stochastic process; that

is:

X(e,@) » (X (6,w), X,(6,8) --- X_(6,9)}
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A particular vector process, with n = 2, is a complex-valued stochastic
process X(t,w) + i Y(t,w). There sre several ways to interpret
stocnastic processes. Stochastic processes can be considered as a
collection, or an ensemble or a family of functions. Each particular

function in the coliaction is called a sample function. a realization

of a stochastic process, or a representative function. If t is fixed
at any particular £, then X(co,u) is simply a random varisble. On
the other nand, if w is fixed, then X(c;wo) is simply & sample function
of t. If both w and t are fixed we have a single number. The
stochastic process can be very complicated or quite simple. Awn
example of a complicated process is Brownian motion. The sample
functions are the coordindies  t & particular parricle which is in
irregular motion in a liquid or gas. The irregular motion of the
particle i:& caused by the rardom impacts with the particles in the
surrounding medium. It the particle has negligible bonds wizh the
medium except at times ot impact, almest all Brownian movemert

sample functions ere ot untounded variation! (Doob, 1933; p 13¥5).

Ap example of a simple process is the output of a signal generator

X{t,w) = a{w) cos {ant{a)t + B(w)y (2.4)

where a{w) s the random amplrtude, L (w) is the ravdom frequeacy #nd
9(w) is the random phase. This 18 nreciseiy what {8 expected ir a8
usuadl exnerimental sr1iuotion: the amnlitude, frequency ane ohase of

the signal generator are oniv <oown withic the limits of the
measurement accuracy.  X(U,~) a8 given by (2.34) 15 a stoohastic procesa

but 1ts sampte tunctions have very sample aralytic properties. From

the marhematical poantl Of view, o stochasUIC provess i g tunction

VANREE e G as a e A
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X(t,w) of two variables t and w. The domains of definitiop of t and w
are the sets T and Q.
For t fixed at £, ve have & rsndom variable X(cl,w) with a first-

order distribution function for the stochastic ¥(t,w) given by

F(xit)) = P (X(t @) <x] . (2.5)

For an arbitrary finite set of values of t, o t2 .- tn, we
have the corresponding random variables x(tl,w), x(cz,w) - X(tn,u)

vith the n-dimensional joint Jistridution function

F(xlvxzn"'sxn;tl;tzv“',tn) = P (x(tlnw) < xl:'"':x(cn:“’) < xn} .

(2.6)

Clearly a stoche tic process is completely specified if the distritu-

tion functions 2re known for all n . In meny physical problems,
such a complete knowledge is not available and one must be satisfied
witl. a knowledge of =ay itz second-~order statistics (s atistics
celculated from the second-order distribution functions, for example,
ccrrelations, power spectrum). Second order properties are discussed
in the next section.

If *rhe distribution functions are differentiable, the probability
density functions exist and are given, for the first-order distribution

function by

f(x,t) = a%"‘—*—‘-l (2.78)

™ ot B A AP v s e o 81 e .- rmpon - “ . ¢




and for the n-dimensional joint distribution function, by

anF(xl»xzt"'xn;:lrt2’°'"tn)
3, dxy - Ox_

f(xl.xz,---,xn;tl,tz,"-tn) =

(2.7b)

2.3 Moments of Stochastic Procesces

As was statad before, a stochastic process 1is completely specified
if its distribution functions are known for ail finite n . In many
physical problems, such complete knowledge 18 not available or it is
excessively complicated or costly to messure these distribution functions
experimentally. An alternative specillcac. .. .. to use ve "lous moments
(defined below) of the stochastic prccess. The first two mome-ts have
found wide use in the communication and control syatem theory. The
expected value (ensemble aversge, msthematical expectation, statistical
average), of any function g(x,t) of a stochastic process is given by

< g(x(w),t) > = j g(x,t) d F(x,t) . (2.3)

In this dissertation, the symbol < g(x,t) > is used to denote the
ensemble averaging. Equacion (2.8) is a Riemann-Stieltjes integral.
1f the probability density function, f(x,t) of x(t,w) existe, the

expected value is given by

<g(x(w),t) > = f gx,t) f(x,t) dx , (2.9)

- 00
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where (2.9) is the usual Riemenn integral. The particular expected
value of x, < x(t, W) > = ux(t), is the mesp or first moment, and
< {x(t,w) - p(t))2 > = az(t) the variance of the stochastic vrocess.

The function < x(t,w)n > is the p-th moment of x(t,w) snd < (x(t,w) -

u(t))n> is the p-th central moment of x(t,w).

1f X(t,w) and Y(t,w) are independeat stochastic proczsses, then,

by definition of independence,

F(x.y;tl.tz) - F(x;tl) F(y;tz) \2.10)

and

<xeo ¥t > = [ [ glir) nGiey arcyiegey)

[l

/ : , : ,

J f glx;t,) h(y;t,) dF(x;t,) dF{y;t,)
- 00 -e

f g(x;tl) dF(x;tl) fh(y;tz) dF(y;tz)

< x(cl,w) > < Y(cz,w) > . (2.11)

The above property of the expectation operator will be used frequently
to separate the ensemble averages of statistically independent
stochastic processes. If either < x(tl,w) >or < Y(tz;w) > {g zero

and X(ul,w) and Y(tz,w) are statistically independent, then obviously
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< X(tl,w) Y(cz,w) >m < X(tl,w) > < Y(tz,w) >a (0 (2.12)

The stochastic processes X{t,w) aud Y(t,w) are sa&id tc be uncorrelated
if

< X(t,w) Y(t,w) > = < X{t,w) > < ¥Y(t,u)} > .

Stetistical independence implies that random processes are uncorrelated,

but not vice versa. I1f

<X (t,w) Y(t,w) >=0 , (2.13)

the stochastic processes are said to be orthogonal. Orthogonality is
uéed frequently to simplify expressions involving stochastic processes.

The most widely used moments are the first and second moments, the
mean and correlation functions, respectively. The theory based on t'ie
first two moments is called the second-order theory or the correlaticn
theory. This dissertation deals principally with the second-order
theory of stochastic differential equations. Unless Linerwise stated,
it is assumed that second moments of the stochastic processes exist.

For a complex process, the autocorrelation function is defined by

Reg (E10t)) = < X(E),9) X*(tz,w) >, (2.14)

*
where denotes the complex conjugate. The autocovariance is defined

by
Cpy(t10ty) = < [X(E,,0) - u(e))] [X(ey00) - nie)]" >

- R(tl.tz) - u(tl) ”*(‘2) )
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where p(tl) » < X(cl,w) > and
* *
B (tz) - <X (tz,w) > . (2.15)

When the means p(tl) = p(tz) = (O, the autocorrelation and the auto-
covariance are equal. Often, it is convenient to work with zeroc mean
processes for this reason. In such cases, the terms correlation and
covariance can be used interchangeably.

The crosg-correlation of two stochastic processes is defined by

RXY(tl,cz) = < X(tl,w) Y*(cz,w) >, (2.16)

and their cross-cavariance by

ny(“l'tz) - ny(“l"z) - ux(tl) “Y(‘z) . (2.17)

A pnumper of useful inequalities can be derived by considering:

[X(E,,0) + k ¥(ey),0)] [X(t,0) + k ¥(t,,0)]"

2
= Ry (Epat)) * k [Rey(epa8) + Ryy (65080 ] + K Ryy(ey,6)) 2 0
(2.18)
The above quadratid in k is nonnegative for every k; hence k must
have no real roots. This means that the discriminant of the quadratic

in k must be nonpositive. Therefore, we have the following inequality;

~—"
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2
[Rey(tpoty) + Ryy(bgut))]7 < & Ryy (2,61 Ryy(Ep,ty)
(2.19)
If X{(t,w) and ¥(t,w) are real processes, (2.19) simplifies to:
2 ¥
Rey (810857 S Rey (8108 Ryy(ey,ey)
(2.20)
1f X(t,w) = Y(t,w) then we have a special case of (2.20)
2
Ry (E1082) S Ryy(E160) Rey (tyaty)
(2.21)
The normalized correlation coefficien. is defined by
(t,,t,)
pyx (t12¢5) Syt T @22)
and crr a-corxelation coefficient by
(t,,t,)
2
by * Ryl : . (2.23)
(Rex (£1281) Ry (t5,85)]
From (2.2%) and (2.20) we have
0 < onx' <1 (2.24)
0 < lpx,i! < 1 (2.25) j

e e
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(‘M) The second order statistics of an n dimensional stocltastic vector

sre given by a covariance (or correlation) matrix. The covariance

metrix of an n dimensional stochastic vector i(t,w) -
[xl(t,w), Xz(t,w) .- Xn(t,w)] is a n x n matrix with the elements
C < (tl,tz). If all the elements of a stochastic vector have

x
17
zero mean, the covariance matrix can be obtained by computing

1 < i(tl;w) iT(tz,u) >, where i(tl;w) is an n dimenslonal column vector

and t denotes the complex conjugate transpose (hermetian conjugate).

In section 3.6, the solution of a control system problem with &
stochastic state transition matrix is expressed inm terms of the
covariance matrix of the state variables. The terms 'state transition
matrix" and "state variables' are defined in section 3.6.

Another term used for the correlation or covariance functions
(both terms may be used interchangeably since we are talking about
zero mean stochastic processes) in partial coherence theory is the

mutual coherence function. The mutual coherepce function is simply

the following ensemble average:

s *
L (t,,t,,;P.,P.) ® <Y (¢ ,P ,0) Y (t,,P,,w)>,
Cwlvz 1’72102 1''1°01 2 ‘f20 % (2.26)

where Yl(t w) and Yz(tz,Pz.w) are complex field disturbances at

1,P1)

two points P, and Pz. The mutusl coherence function defined in this

1

! manner is the ensemble coherence function. If time averaging 1is used,

one has 8 time coherence function. Both the ensemble coherence

functions and time coherence functions have been used in statistical

~otics and in general stcchastic electromagnetic theory. The ensemble

) coherence functions are discussed further in Chapter IV.




33

A number of basic inequalities and properties can be established
for stochastic processes. Some of thr~ more useful ones are stated
withouz proofs. Proofs and more complete discussion is found in

Loeve, (1963, page 156).

l. If for some m > 0, < ]X(t,w)im > < w, then < lx(t,w)ln >
is finite for n < m, and < xk(t,w) > exists and is finite

for k < m.

2. Holder inequality

For any two processes X and Y or the finite moments,
1 m 1 n 1 1
< xy| >< < |x[m>" < |y|n >, where m > 1 and — + - = L.

(2.27)

3. A special case of the HOolder inequality is the Schwarz

inequality < [XY| 52 << lx!2 > < |Y}2 > .

(2.28)
4. Minkowskil inequality
Under the same hypoc:ihesis as 2,
n L 1 1 n 1
NN R D TR N | 4 R
(2.29)

1
5. 1f < |X|" > exists for each n, then < [x|" >0

is a nondecreasing function of n.

A AT ot
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2.4 Stationarity Concepts

In some applications, the statistical properties of stochastic
processes exhibit some invariance under translation of time, space or
some other independent variable. As more or less stringent conditions
of invariance of the statistics are imposed, different types of
stationarity may be defined. A stochastic process X(t,w) is said to

be strictly stationary (stationary, stationary in the strict sense,

statistically homogeneous) if the whole family of its finite-dimensional
distributions are invariant under a translation in the parameter t;

i.e.,

+h,. .t +h)
n

F(xl.xz,...xn; tl,tz,...t ) = F(xl,x t. + h, :2

X
n 2’ n' 1

(2.30)

for any n, ¢ .,tn, and h. The statistics of the strictly

TLOTEE

stationary stochastic processes are not affected by the choice of

time origin. The processes X(t,w) and Y(t,w) are jointly stationary

(in the strict sense) if the joint distributions are invatriant under

8 translation in the parameter t. A complex nrocess

2{t,w) = X(t,u) + 1 Y(t,w) 2.31)

is said to be stationary if X(t,w) and Y(t,w) are jointly stationary.

A process X(t,w) is stationary of ordep k it (2.30) is true only for

n < k. A process which {5 stationary of order 2 is slso & wide-sense
stationary (weakly stationary) process. A stochsstic process is a

wide-gense stationary process if

< X{t,w) > = = constant,




and

< X(cl;w) X*(tz;w) > = < x(tl;u) x*(c1 + 1, W) > .- RXX(T)

(2.32)

The wide-sense stationari:y involves only the first two moments. For
this reason, in a8 second-order theory only the weaker assumption of
wide-sense stationarity is used instead of the stronger assumption of

strict stationarity. Two processes are jointly stationary in the

wide sense if each is stationary in the wide sense and their cross-

correlation depend: only on t, - tlz

*
R (1) = <X(t,;w) Y (¢, + 17; w) >
<Y 1 l (2.33)

One often meets stochastic processes which can be expressed
comparatively simply in terms of wide-sense stationary stochastic
processes. Such stochastic processes are said to be reducible to

wide-gsense stationary processes. Ar example of such a process is

Y(t,w) = t(t) X(t,w) + g(t), (2.34)

where X(t,w) is a wide-sense statiunary stochastic process, f(t) and

g(t) are real functions. The mean of Y(t,w) {is

(r) = i(t) p, + g(o),
Y X (2.335)

the covariance of Y{(¢,w) is

A Gt e s
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/ / >
=< Kf(‘l)x(CL'“)+8(‘1)'f(tl)“x'g(‘l)/ &f(tz)x(tz,w)+g(£2)-f(t2)ux-g(t2)/ >

~

= £(e)) £(2,) Ry (ry-t ) -2£(c)) qu, -

PP

- f(cx) f(tz) Cxx(tz-tl),

(2.36)

sand the variance of Y(t,w) is

2
Cyy (260 = £7(e) C,\ (0)

The normalized covariance function of Y(t,w) is

x\tl) x(nz) Lxx(tz-tl)

cYY(tl,cz) Y - L {t,-t,),

2 2 2
it (‘1) t(c,) Cxx ("M )

(2.38)

which is the same as the normalized covarilance tunctice ot the wide-

sense stationsry process X{t,w)

The important concepts ot tipe avergges, time autocorrelation

functions and egodicity are not discussed here because, 1u this

dissertazion,

ensemble stalistivs dre used ex-lusively.

1.5 Calculus of Stochastic Processes

In order to

study the dual-tacal

Prancries

ot stochastac

Nrocesses, the concent ot vOnvVerdence musl o be del ced tirst. Suppuse

4 sequetice of random variables Al(ﬁ). X, U)o, 1s given and all
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the random variables xn(w) are defined on the same r.obability space
1. Let x(w) be another random variable defined on the same probability
space. One could define convergence in the same manner as it is
defined in deterministic enalysis, requiring thac the sequence xn(w)
converges to x(w) for every realization of the sequence. Such a
definition of convergence is too restric ive. In stochastic theory,
it is convenient to allow less string ut modes of convergence. Three
most important modes of convergence of xn(w) to the limit s(w) s¢

*

n —+o® agre:

1) xn(w) converges to x(w) almos: everywhere P-measure (a.e.P),

or witu probability one, or almost sure (a.s.), if

P(xr(w) —+x {(w)) = 1.

2) xn(w) converges to x(w) in quadratic mean (q.m.;, Or in mean
square (m.s.) or limit in the mean (l.i.m.), if

< ?xn(w) - x(w)iz > =

3) x)(w) converges to x{«) In probability, or in P-measure, it,
1

tor every ¢ 0, P{ !xr(w) - x(w) e ) 0.

In addition to thesc three . a tourth one, 1s sometimes used.

4) x {(w) converges (v x(w) 1o distribution tunct oe, il at every
n T

point of continuity ol F(x), F(x )} » Fx).

The first three modes 0@ coprvergence are apalogous to the corresponding
modes ot convergence i medsure theory. Oune can show that »lmost

everywhere (&.e¢ B) and quadratic mean (g.m.) convergence imply

*
cramer avrd Leadbettoer, 19b

~d

At By w0+
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convergence in probability and convergence in probability implies
convergence in distribution function (Papoulis, 1965). The relations
between the ¢ four modes of convergence are shown in Figure 2.1. 1In
this dissertation, almost everywhere and quadratic mesn convergernce
are uged mosgt orten. Using the definition of quadratic mean conver-
gence, quadratic mesn continuit) and quadratic mean differeatiation
can be defined. A second urder stoche<tic process is continucus in
quadratic mean at teT if X{t + h;w) converges to X(r,w) in g.m. as

h =+0, t + heT. A second-order stochastic proceess X{(t,w) on T has a

ax{t w)

derivative in quadratic mean dt

, at teT if

Fit+h w - X(t,w) q.m dX(t,w)

h q-m gt , as h = 0,(t + h)eT.

(2.39)

By using almost everywhere convergence instead of quadratic mean
convergence, almost everywhere continuity and differentiability cen

be defined. ligher order derivatives and partial derivatives in
quadratic mean can be defined similarly to (2.39). The quadratic mean
Riemacn, Riemann Stieltjes and Lebesgue integrals cen be defined by
using the quadratic mean convergeuce of the approximating sums which
are used in the definitions of these integrals. The ordinary formal
properties, such as additivity and integration by parts, hold for
integrals in quadratic mean under the appropriate conditions (Loeve,

1963). The following theorem, which is stated and proved by Loeve

(1963), will be later used to find expectations of iterated integrals.
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ALMOST g™
/ EVERTWHERE CONVERGENCE

CONVERGENCE

\CON“E RGENCE IN PROBABILITY

r——

CONVERGENCE IN DISTRIBUTION

\_N
NO CONVERGENCE

Figure 2.1 - Comparison of Various Modes of Convergence

+
——
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Theorem 1. Let the second order stochastic processes X{t,w) {with
covariance function Cxx(t,t')] be independent of the second-order

increment function AY(t',w) (with covariance function AA'CYY(t,t')

on an interval I X I, where I » [a2,b] is a finite or infinite interval)}.

Then,

o
\j X(t,w) d¥(t,w) exists if, and only if,

1

A
] ] ¥ .
h/ u/\ Cxx(c,t ) dd CYY(t,t ) exists; also, if the integrals
I 1

in quadratic mean which appear below exist, then

< [ xe,w ave,w j X" (W et (e >
J
1 i

' *
- [ / < X(t,w) X (t',w}y > dd' ¢ (¢,t")
\JI UI' Yy (240)

The double integrals are the usual Riemann-Stie[fjes integrals.

The independence condition of this theorvm is fulfilled when the
stochastic process X(t,w) and Y(t,w) are independent or when either
X(t,w) or AY(t,w) degenerate into deterministic functions. The
independence condition can be suppressed altogether when the elements

*
of the double integrals are replaced by dd < X(t,w) X (t',w) Y(t,w)

*
Y (¢',w) > .
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The convergence of the iterative solutions of stochastic
differential equations can be interpreted according to one of the
modes of convergence. Prcbabilistic functional analysis, as dis-
cussed in section 2.9, uses the almost everywhere P convergence
(almost sure convergence). The convergence in quadratic mean (mean
square convergence) also has found wide use in applications such as

communication and control system theory.

2.6 Expansions of Stochastic Processes and Spectral Theory

Analytical operations with stochastic processes can be
simplified if they can be represented as linear combinations of
orthogenal rendow variables. A stochastic process x(t,w) can
frequently be expressed either as an infinite series

R(E,0) = (c) + X, (&) g (6) (2.41)

km}

or as an integral

x

~
x(t,w) = px(t) + / X(s,w) g(t,s) ds .

oJ
&)

(2.42)

In (2.41) Xk(w) are orthogonal random variables and gk(t) are deter-
ministic functions. In (2.42) X(s,w) is a random function of the
parameter s, g(t,s) is a deterministic tunction of time and s. The

random variables Xk(w) satisfy the following crthogonaiity condition:

< Xi(w) Xj(w) > = 0 for i %)

2 .
= 8, for i = j. (2.43)
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; ) The corresponding orthogonality condition for the integral expansion

(2.42), written as the following Riemann-Stieltjes integral,

§ [

x(t,w) = ux(t) + u/\ g(t,s) ds X(s,w), (2.44a)

is

<d, X(s,w) >=0 (2.44b)

snd

*
< d81 X(sl,w) dso X (sz,w) > = oxx(sl) 5(8l - sz) ds1 ds2

(2.44c¢)

The expansions (2.41) and (2.42) have been called in the literature by

a number of different pames. They are known as the canonital expansions
(Pugachev, 1965), orthogonal decompositions (Ldéve, 1963) or as the
Karhunen- Loeve expansion. In Chapter IV, the integral expansion {(2.42)

is used to study a wave propagation problem in a randomly time- and

space-varying medium. The dielectric permittivity is assumed to be
a wide-sense stationary stochastic process. For this reason, the
following discussion is restricted to the integral expansion. For
simplicity, it is assumed that px(t) = 0, For the wide-sense
ctationary zero mean process, the integral expansion (2.42) is

(Pugachev, 1965, p. 239):

[

x(c,w) = j X(s,w) e %t ds | (2.65a)

-0
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where X(s,w) is given by
oo
X(s,w) = ; /\ x(t,w) e %% g¢
" J (2.45b)
-0
The integral expansion (2.45a) is also known as the spectral
representation of the wide-sense stationary stochastic processes,
and (2.45a) should be written as a Riemann-Stieltjes integral
r
x(£0) = 't a4 x(s,0); (2.46)
s
-a0

however it is more conveuient to o erate with the integral expansion as
it is expressed by (2.45a3). 1In such case, it must be kept in mind
that X(s,w) may be a generalized function. If X(s,w) is given by

(2.45b), then we have, for the wide-sense scationary processes,

< X(sl,w) X*(sz,w) > m

, 2 ® -is.t, is.t

VAR [ * 171 272
- [ — - . sw) >

k\ 2 / L/ u/ x(tl,w) X (tz,w) € e dt1 dt2
- 1 r . -islt1 iszt2

( x ) / Rex(ty = £) e e de, dt,

{2.47)

Making the change of variable t, - =T (2.47) becomes
“

*
< X(s,,w) X (s5,,0) > =

, 2 =z -5, t is,T
- ( ~%~ ) / / R (1) e 1l e dr dtl
n \Lmd XX (24}8)
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&4
But,
ic. (s, - 8,)
1 1¥%2 7 & .
n J[ e dt1 = 6(52 - '1) (2.49)
-0
Hence
* 1 y 1321
< x(ll;“) X (Bz;w) >= 5(82 - al) % u/ﬁ Rxx(1) € dr
~00
a0

(2.50)

This relation {2.50) will be used ofter in Chapter IV. The power
spectral density oxx(a) (power spectrum) of a wide-sense stationary
stochastic process is, by definition,

1 -is7
°xx(') = om fnxx(v)e dr . (2.51)

-

The spectral density and the correlation functions are Fourier trans-

form pairs of one another,i.e.;

A ist
Rxx(f) - k/ oxx(s) e ds . (2.52)

There is no universal agreement whether the factor 1/2 x is placed
in front of (2.51) or in front of (2.52). The variance of the
stochastic process X(t,w) can be found from the power spectral

density by:

R“(O) - 02 - f °xx(') ds ) (2.53)




Frem the assumption that X(t,w) is & second order process, that is

02 is finite, we have:

Jr @xx(s) ds < = , (2.54)

For real stocl :sti. processes, Rxx(Y) is an even function of v, and
it cen be easily shown by making 8 change of variable v = Ty in

(2.51) that

2 (8) = & (-5)

(2.55%)
The spectrul function is defined by:
1
oxx(sll - J[ Oxx(s) ds . (2.56)
-0

It can be shown that sxx(sl) 1s a real nondecreasing bounded funciion
of its argument 5, (Khintchine, 1934). From this propercty it fc.lows

that

Oxx(s) > 0 . (2.57)

The mutual spectrsl density of jointly wide-senre stationary second

order siochastic processes X(t,w) and Y(t,w) is given by

~

¢ (s8) = 21 j ny('f) e-“T dr . (2.58)

R

PO
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In this section the diacussion of the power spectrum was limited

to the wide-sense stationary processes. In the next section, the

»,‘r

definition of the power spectral density is generalized to be appli-

cable to the nonstationary processes. This generalization is need:~d

for the discussion of nonstationary solutions cf the scalar wave
eguation.

*

2.7 Spectrum of Nonstaticnery Processes

When the stochastic vrocess X(t,w) 1is not wide-sense stationary,

its autocorrelation function is Rxx(t"CZ); that is, the autocorrela-

tion function is a function of tl 1od & rather than just t2 - tl'

For this reason the power spectrsl . .s -ty for a nonstaticnary process

ie given by the double Fourier transfor. of Rxx(tl,tz):

L +isltl~iszt7

dx(51i8)) = T3 ff Rex(tpeta) € - dey
- 00

(2x)

(2.57)

with the inversion formula

St e oo b -2/ et e

—1alc1 4 iszcz
R(tl,tz) a u/‘Jf oxx(sl,az) e da1 d32
-0

*
From the fact that Rxx(tl,tz) - RXX (:2,t1) and from (2.59),

OXX(sl,sz) - Oxx*(sz,al)

"
Papoulis (1965), and Blanc-Lapierre and Fortet (1965).
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1f R(tl,tz) is real, then

t 3
oxx(-sl,-sz) - oxx (sl,sz) . (2.62)

It is easy to see that the general double transform (2.59) reduces

to our previous result of X(t,w) wide-sense stationary, 1.e.:

-is. 71

Oxx(sl,sz) = 6(52-51) —%; \jf RXX(T) e 1 dr

= 5(82'81) ¢ (51) . (2.63)

XX

On the other hand, if ®xx(sl,sz) is equal to 6(82-81) oxx(sl). the

inversion formula (2.60) becomes

x

-is.t. + is,t
[ 11 272
Rk.(t1,~2) - u/ J oxx(sl) 5(52-81) e ds, ds,
{ \ -
-/ o e
Y T 1
- - - 2.
Rxx(t2 tl) RXX(T), (2.64)

which show: that X(t,w) i. 8 wide-sense stationary stochastic process.

The above results can be summarized as the following theorem.
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X{t w) [;QNEAR.DETERM”WSﬂC Y(t o)
——e SYSTEM '

INPUT ) TouTPUT

Y('.U) = LX(f‘ w)

Figure 2.2 - Linear Deterministic Transformstion of a
Stochastic Process
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function of the output procese, if it ~an be assumed that the

expected value operator and the linear operator can be interchanged.
The expected value operator and the linear operator are interchangeable
for practically almost all deteiministic linear operations. For
example, it can be shown that the differential and integral operators
are iInterchangeable with the expected value operations, (Pugachev,

1965, o. 387). Thus, the expected vaiue of Y(t,w) is

<Y (t,w) > = <LX (rw) > = L <X (r,) > (2.678)

or

pY(l) - LuX(Y}- (2.6/v)

It (2.67) is subtracted from (2.65), we have, according to
(2.66)

Y (t,2) = LX (1,4, (2.08)

WV
where the sabscript o der tes that ¥ (U,w) ad X (1,w) dre orocesses
J 6]
with rero weans. For zero mean processes, both the covariance

tunction and cutreiation tuncCilones o1t Y (t,w) are given by the same
(6] .

eXPivssi its

o v i
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Yy ‘t10tf ety
[$ e

*
» < ) s o >
< LTl xo(?l’w) (szxo(-r2 w))

<L L o X * )y >

~ O(Yl,w) o (szw)

<L L * < X X * )y >
s Ly o(T.w) o (v

*
= L L , Rx X (71,72) , (2.69)
2 oo

where the subscript on the operstor denores that the operator acts on
the stochastic process with the same argument as the subscript. To
illustrate applicetion of {2.69), simple linesr differential and

integral operators are considered. First, let L be "%Z {(*). Then

by (2.67b)
u (t) = d_ (t) {(2.70a)
Myt dt Mx ’
and by (2.69),
52 R, (t,,t,)
790 Sns R
(t,,t,) = (2.70b)
RYOYO 1’52 dt, ¢,

For higher derivatives, that is,

n
L) = =), (2.71a)
dt
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we have
n
uY(t) - ” ux(t) (2.71b)
dt
and
= (t,,t,)
Rxoxo 1°%2
RYOYO(ti,tz) - " " " - . (2.71c}
1 2

All these relations, (2.70) and (2.71), can also be derived directly
from the definition of the quadratic mean derivative (2.39).
Another important class of linear operators are integral

operators of the following type:

~
Y(t,w) = \j g(t,r) X(v,w) dr , (2.72)
T
where g(t,7) is a deterministic function. g(t,T) may be a Green's
tun tion or the impulse r »jonse of a linear system. From (2.67) and

{7 ACY ywe have

(t) = g(t, 1) p_ (1) dr (2.73a)
Hy X
T

and

P
Ry y (608 = ‘/rg(‘x"l) 8(ty).Ty) By y (1),7,) dv) d7y
oS 0 o0
T T
(2.73b)




w
[ %]

The expressions {2.73) csr be also derived directly from the definirion
of the quadrstic mean integrais. It is alac a special case of the
integral (7.40). The results cof this section will be frequently used
in the subsequent chapters of this dissertation.

The special cese of a linear trensformation of Gaussisn procesaes

is of interest. ‘the characteristic functional of real stochastic

processes X(t,w) and Y(t,w) is

gy(\) = <exp [ 42 ¥(t,w) ] >

a <exp [ { ALX(t,w) 1>, {2.74)

where A is a linear functional. For contivuous stochastic processes,

A is an integral

-
A o= j A (E) Y(r,w) dt, (2.75)
T

and for discrete stochastic processes, N is & sum

N
kN - :? An(tn,w) . (2.76)
nal

Since A is a linear functional the relation (2.74) shows that the

characteristic functionals for X(t,w) and Y(t,w) are related by

gy = g, [AL] (2.77)
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1f the “eal stochastic process X(t,w) ha: a8 Gaussian distribution,

its characteristic functional is (Pugac ev, 1965, p. 193):

gx(k) =exp [ 1A ux(t) - Ktl htz Cxx (tl,tz) ]. {(2.78)

Using either (2.77) or (2.69) and (2.67) the characteristic functional

of Y(t,w) 1s given by

By = exp [ AL (1) - % (xL)t2 Cog (E1285)] =

= exp [ 1AL Hy () -

r

A N (L L c,.(r.,t.0) ]
t t XX'' 12
1 2 2 (2.79)

This relation (¢.79) shows that for Gaussian stochastic processes
the characteristic functional . mains invariant under linear trans-
formation. Since the multivariate distribution functions ran be
determined from the characteristic functional, it can be concluded

that a linear transformation of Gaussian processes yields Gaussian

processes. The spectral expansion of a Gaussian process is also

a Gaussian process, because spectral expansion is a linear trans-

formation of a random process. As ° =ag rtated hefore, all the
muitivariate distribution function can be obtained from the charac-

teristic functional. But, from (2.78) it can be seen that the

characterictic functional for the Gaussian process is completely
determincd {f the mean ...d covariance of the process are knowu.

Hince, & Gaussian process is completely determined if its mean

and covariance sre known. For the same reason a widc-sense stationary

Gaussian process is alsc strictly stacionary.
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Theorem 2. A second order stochastic process X(t,w) is wide-sense
stationary 1if end only if its bifrequency power spectral density
0xx(sl,sz) is equal to *(52-51) exx(sl) [or equivalently to
5(82-31) oxx(sz)].

This result will be used in Chapter IV to identify wide-seunse
stationary snd nonstationmary components of a random wave function.
This is done by computing the bifrequency spectral density oxx(sl,sz)
and identifying the coefficients of 5(8:-91; as the wide-sense
stationary parts of the spectral density. The terms which do not
contain b(sz-s]) are identified as nmonstationary parts of the spectral

censity.

2.8 Linear Transformations of Stochastic Processes

In this section some of the known results from linesr determin-
igtic operator theory are presented. A linear determiunistic system
is shown in Figure 2.2. Let the input to the system be X(t,w) eand
the output to the system be Y(t,w), teT and wefl on the probability
space (1,%,P). Mathematically the relation between the input and

output is
Y(t,w) = L Z(L,w), (2.65)

where L is a linear operator. [An operator L is said to be

linear if

L [a xl(t) +b xz(c)] = al xl(c) +b L xz(t) (2.66)

for every constant s and b, and for everv function xl(t) and

xz(t).] It is easy to compute the expectation and the covariance
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Definitions ....d Theoreme *rsm the Thoeory of Randouw Op..ator :
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Ectiatives
v V)
Probabilisric functinnal analyeis, develeoped mainly by Spacek

(1955), Hans (1961), and Bharucha-keid (1960, 1964, 1965) provides

rigorous definitions and useful existence theorems for random operator

equations. The main results of this work have been conveniently
summarized by Hans {(1961). Some of the definitions and theorems that
are used later in this discertation are extracted from his work.

Let (2,%,P) denote a nrobability space with a complete probability
measure P; that is, {i is a non-empty set, ¥ is a g-algebra of subsets
of the space {, and P(A) is a probability measure defined on the sets

Ao

L)

Z.

in chis section, X and Z are arbitrary separable Banach spaces, s
2 aund o the g-algebras of all Borel bsets of the spaces X and
Z, respectively (Zaanen, 1953). ;

Next, the concepts of "generalized random variable'" and ‘'random

o G

transformation' are defined.
A mapping V of the space ! into the space Z is called a

generalized random variable if {w: V(w) eB} € [ur all BeS.

Two generalized random variables V(w) and W(w) are said to be
equivalent if V(w) = W(w) with probability one.

A mapping T of the Cartesian product space 2 x X into the space
Z is called = random transformation if T(:,x) is, for every xeX,
a generalized random variable.

In the most general form, a random operator equation is written as

T l(d,x(h))] - z(w) , (280)
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where T i8 8 rendom trinstormation of the Cartesian product space
1 x X into the space Z. 1z is a generalized random variable =ith
values in the space Z. As 1is seen from (2.80), the solution of a
random operator equation does, in general, depend on the choice of
wel. If the solution of (2.80) satisfies the measurability condition
(1.e., it is a random variable*) we call it a random solution of the
operator equation. Hence, the following definition:

Every generaiized random variable x with vaiues in the space

X satisfying the condition T [w,x(w)] = z(w) with probability one will

be called the random solution of the random operator equation (2.80).
e following theorems which are useful for our investigation

hav. been stated and proved by Hans (1961).

Theorem 3. Let T be an almost surely linear bounded randec (ransfcerma-
tion of the Cartesian product space §! x X into the space X. Then

for every real number A # 0 such that

P (Unst (wr | TV () |~ M) =1, (2.81)

there exists a linear bounded random transformation S that i{s the

inverse ot tue tandom cransformacion (T - Al) and it satisfied

P (s = G B AN @) = L (2.82)

1
where the sum converges uniformly. 1 denotes the identity operator,

and || || denotes the norm in the Banach space (Zaanen, 1953).

*
Discussed in section 2.2.
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In many applications, it is sometimes convenient tO use &

different version of thc above theorem.

Theorem 4. Let T be a random transformation of the Cartesian

product space £ x X into space X which is, for every wefl, linear and

bounded. Then, for every real number A ¥ 0, the set
Q) = (wifT(w, ) < {A) (2.83)

belongs to the g-algebra ¥, t'e random transformation (T-AJ) is
invertible for every wefl(\), the resolvent operator I'(w,A,") exists
for every wefi(A\) and, for these w, the resolvent operator is given by

P, ) = -E0 AT T (0, (2.84)

Furthermore, for every wefl(a) the solution s(w) of the operator

equation
T(W,7) - Al = z(w) (2.85)

is, for =very generalized random variable z with values in the space X,

given by

g(w) = Tlw,A,z(w)] (2.86)

where the resolvent operator I'(w,A,-) and, consequently also the
solution 5, are measurable with respect to the g-algebra O(X)/\z.
Next, three theorems which are useful in establishing the extot-
ence of solutions of the random integral equations are stated. Let C
denote the space of alil continuous functions defined or the closec

interval [0,d], 0 < d.




e

5b
It the norm x is give by
Fxlf = ™ x] 5 0<uga, (2.87)

the space C becomes a separable Bsnach space.

First, a theorem that gives the relationship between the
measurability of the random integral operator and the measurability
of its kernel is stated. Let K fenote the space cf all functions
k defined and bounded on the set [0,d] x [0,d] all of whose discon-
tinuity points are located on a finite number of curves v = Di(u)
and such that for every ue{0,d], ve[0,d}, and for every sequence
of real numbers 4 > 61 >, > 0> &n-ﬂ 0, we have k(u,0) =

lim k(u,bn) and k(u,v) = éﬁﬂn k(u,v-&n), provided 61: v in the
latter case. If tie norm of k .5 f| k || = sup |k(u,v)|, where

sup is taken over u ¢[0,d) and v €{9,d], then it can be shown that

K is a separable normed linear space.

Theorem 5. Let k be a mapping of the space §1 into tk~ space K and
let the mapping T of the Cartesian product space i x C into the

space C be defined for every wefl by

4 L

T(w,x) = cok(w, r,u) x(u) du (2.88)

0
Then, the mapping T is tor every well 8 compact linear transtormation
of the space C {pto itself Furthemmore, T is a random tr.onsformation.
The next theorem gives a sufficient condition tor the inverti-

bility of s linear raniom transformation.
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Theoremw 5 Lez aii the aesumptions of Theoreaw 5 be fulttlied. Let,
in addi. J.n, the real number A satisfy the 1negi.ali:ty

d flkqw, -, ) < !\| with probability one. Then the linear random

tra~sformation (T - Al) {s !nvertible; that {s, |
P (Wi{w,A) €p(T)) = 1, (2.89)
where p(1) deiotes rhe sat of thogs paira {(«,N) ew X R {ul which

the linear rardow transformation (T - AI) has a liunear bounded inverse.
R denotes the rval number axis.
The above theorem applies to verdom Fredholm integrasl equations.

The next theorem is its ensiogue for the Volterrs kernels.

Theorem 7. Let all the assumptions of Theorem 5 be rtulfilied. Let,
in addition, the kernel k satisty the condition
P {w: k(W,u,v) = 0] = ] for every 0 < u <v = d. Then, for every

re. | number A ¥ O the livcear random transformaticn (T - AI) is

invertibie.

Prooi. Similarly to the classical rroof of the convergence of
N . * - .
Volterva (ntegral equation |, {t follows that for almost every well =
and every n = [,2, ..., we have

n

16 S DY I D V- E A YIRS ¥ LS (2.90) i

Hence, Theorem 3 is applicable and the Neumann series expansiorn (2.81)
converges uniformly.
The above theorems give sufficient conditions tor the existence,

unigueness, and measurabiiity c¢f random solution of the random

* -
Zagnen (1v¥>3)
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operator equations. These are sufficient conditions; that is,
solutions may a2lso exist under we.ker conditions. Unfortunately,
no necessary and sufficient conditions are known for the existence
of a solution of the general random operator equations. The main
restriction in all the above theorems in that T is almost szurely
lirear and bounded.

Many interesting stochastic processes ere not bounded, hence the
preceding theorems are not strictly applicsble. We can use a trunca-
tion method, suggested by loeve (1963), to overcome this difficulty.
The rsndom veriable X{(w) is truncated at ¢ when we replace X(w) by

Xc(w), where
XS(w) = X(w) if [Xw)| <,

X“(w) = 0 if X} > ¢

and

¢ >0 and finite. (2.51)

Then, all the moments of xc(w) exist "nd are finite. We can
always select ¢ sufficiently large so as to make P [X(w) # Xc(m)] -
P[ |X(w)] >c] arbitrarily small. Whenever boundedness of the
stochastic processes is reeded in the application of the preceding
theorems (Thecrems 3 through 7), it is assumed that the etochastic

processes are truncated ‘n the above sense.




CHAPTER 111

GENERAL METHODS OF SOLUTION

3.1 Introductijor
In this chapter, two metheds tor solving differential equations
with randomly time-varying coefficients are developed. 1In the first

cage, we consider a stochastic differential equation of the form

£ oy(r,w) = x{t,w) ,
where
n
\I
§ d
f = 8\}([,(-!)) v ’
/ dt
v=0

and x(t,w) and the av(t,w) are random functions whose statistics are
known and defined on teT, weli on (4,%,P). (4,7,P) denotes a probability
measure space; i.e., I is & non-empty abstract set, ¥ is a ¢ algebra

of subsets of {i, and P is a complete probability measure on ¥. 1t is
further assumed that the random operator { is the sum of an invertible
operator L and a random operator R. The objective {8 to determine a
stochastic Green's fuuction (Adomilan, 1964) for the stochastic

operator  in terms of the deterministic Creen's function for L end

the appropriate '"statistical measures"

of the forcing function x(t,w)
and the randomly time-varying coeftficients a(t,w). The term "statistical

measures' is used as a general term for the quantities that characterize

stochtastic processes. For example, expectations or means, spectral

v
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densities and correlation functions are statistical measures. The
integral kernel which expresses the desired statistical measure of
the cutput process in terms of the corresponding statistical measures
of the input and sppropriate statistical measures of the stochastic
coefficients is called the "stochastic Green's function”. Adomian
{1967) has developed an iteracive process for finding the stochastic
Green's functions for the expectation and the autocorrelation function
of the output process. This iterative method achieves the desired
scperations of ensemble averages without a priori restrictions to
perturbation-type approaches or recourse to the generally non-valid
closure approximations of the hierarchy equation methods.

The egimiiarity between Adomian's iterative method and the solution
of an integral equation by means of Neumann series suggests that the
stochastic Green's function can be expressed in terms of the determin-
igtic CGreen's function for the operator L and the resolvent kernel for
the Volterrs integral equation. In this chapter, the ensembie average
and correlation function of the dependent variable are expressed in
terme of the Green's function of the operator L, the average and the
correlation functioo of the forcing function x(t,w) and the resolvent
kernel of the Volterra integral equation. The resolvent kernel is s
function of appropriate statistical measures of the random coefficients
and the Green's functior of the deterministic operator. By finding the
resolvent 'ernel, the solution of the problem of finding the average
and the correlation function of the dependent variable is expressed
for a class of forcin: functions. The Neumann series expansion is

exceedingly laboriocus; for this reason, other methods for solving the
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problem are investigated. The solution of the stochsstic integral
equation is simplified if the kernel of the integral aquaticn ia
degenerate. In many caseg, the problem of sclving a stochastic
differerntiasl equation, with a time invariant deterministic parc,
reduces to a problem of solving an integral equation with a degensrate
kernel. Three different cases of degenerate kernels are congidered.
In the first and eimplest case, the degenerate kernel consists of

a single term. In the second case, the degenerate kernel is a sum

of n products. In the third case, the degenerate kernel is a preduct
of the state tvansition mafrix amd & matrix >f stochastic coefficients.
The iast case is applicable to the state space formulation of control
system problems where the system metrix 1s the sum of a deterministic

time-invariant matrix and & stochastic coefficient matrix.

3.2 Integrel Equation Formulation and Sciution by Neumann Series
Expansion

Following Adomian's (1967) approach, let £ be an nth order

stochastic differential operator, such that

n

] d\l
= z a{t,w) , (3.1a)
ae¥

v=(

where av(c,w) are random functions, teT and well (0,%,P). Let the
operator §' be separable into a deterministic operator L and a random
operator R. In particular, let the random coefficients of £ be of the

form
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av(t.w) = Bv(t) + avit,w) , (3.1b6)

where %}t) are deterministic functions of time and uv(t,w) arve
stochagtic processes. Sv(t) can be either the ensemble average of
av(t,w) or some other convenient function of time. For example, it
may he possible to choose BV(L} so that the inversinsn of the determin-
istic differential operator L is simplified. It is assumed that L is
an invertible differential operator; that is, the Green's functicn
G(t,7) for the differential operator L is known or can be constructed.
One can asgociate with the operatoer £ a stochastic differential

equation

£ y(t,w) = x(t,w) teT and wefl on (&,%,P). (3.2)

The forcing function x(t,w) can be either deterministic or random.
For greater gemerality, let :t be random. It is also assumed that
x(t,w) ie statistically independent of the random coefficients. By

the assumption that £ = L + R, the egustion (3.2) can be written as

followus:
L y(t,w) » x(t,w) - R y(t,w) {3.3a)
where
n
Z ¢ (3.3b)
L = g (t) —— ,
v dtv
v=0
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and
n
N
R = j{: Gv(c,w) " (3.3¢c)
gt ’
v=0

By the assumption that the Green's function for the deterministic

eoerator L is known, (3.3) can be converted into an integral eyuation:

yew) = L' x(r,w) L7t R yr,0) (3.4a)
where,
t
LT (3.4b)
~0
and
¢ n
- N dv
L'k = /df G(c,v)z a (1,w) " . (3.4¢)
v dr
0 v=()

The uge ¢f 0 as the lower limit assumes that either the system was
initially at rest or the initial conditions have been :aken into
account in the construction of the Green's functiou G{t,t). The upper
limit 18 & for causal systems since, for causal aystems, G(t,7) =

for t < 7. To simplify the notation, let

L' w(e,w) = F(t,w), (3.51)

L




R T

E

a—

)

R e e

65

and let

n

G
K(t)T) " G(t’T) L OV(T’w)

av . (3.5b)

AY

de

va(

With this notation, Equaticn (3.4) can be expressed as an integral
equation which resembles tlie Volterra integral equation:
t

y(t,w) = F(t,w) + A f K(t,7) y(v,w) dv . (3.9)

Q

In this case, A = -1, The solution to Equation (3.6) can be expressed
analogously to the Neumenn series solution ‘n terms of iterated kernels

(Courant and Hilbert, 1953; and hildebrand, 1952):

e t
y(t,w) = F(r,w) + 2 A" [Km(t,f) F(r,w) dr , (3.7)
J
m=] °

wvhere Km(t,f) is defined by the recurrence formula
t
Km(t,v) - \/PK(t,7 ) Km«l (11,7) dvl (3.8a)

(o}

and

KI(C,T) = K(t,7) . (3.8b)
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*
1f the sum converges uniformly, the order of summation and integration

can be interchanged in (3.7), which then becomes:

t ©
|
y{t,w) = F(t,w) + A J/ 2: " Km+l(t,7) F{r,w)dr J .
o m=0

(3.9)

Then equation (3.9) can be written in terms of the resolvent kermel

r'(c,r,w) as foilows:

t
!
y(t,w) = F(t,w) + A | D(t,7,\,0) F(r,0) dr (3.10a)
JO
where
(e, T A, w) Z A" K ) (6,7,5,0). (3.10b)
m=0

Since, in this case, A is -1, the resolvent kernel is written from
now on without A in its argument. At this point, we have nothing
essentially different from classicai difterential equation theory.
The difficulty arises because y(t,w) is not a physically significant
quantity, only its statisticai measures are. The mean value of rh-

dependent variable y(t,w) can be computed by taking the ensemble

*
Discussed later in thi 6 sectioun.
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average of equation (3.10). It must be noted that because ¢f the
assumption that the random coefficients and forcing function are
independent, the problem simplifies in that the resclvent kernel
r(t,r,w) and F(1,w) are statistically independent of one another.

Hence, the ensemble averages separate and the ensemble average of

y(t,w} is given by:

L

< y(t,w) = < F(t,w) > ~<}h< r'ie,r,w) > < F(r,w) >dr ,

o (3.11a)
where from (3.4b) and (3.5a)
t
< F(t,w) > = h/ G(t,7) < x(t,w) >dr . 3.11b)
o

In this case, the stochastic Green's fuaction is stmply < '(t,Tt,w) >.
Similarly, the autocorrelatfon function of y(t,w) can be computed.
For greater generality, y{(t,w) is taken to be a complex function. Then,

the autocorrelation function of y(t,w) denoted by Ryy(tl’t’) is:

R ) = < y(t * >

- w W

yy“x"z yie,, )y (tz. )
"l _
r / . \
» < GF(e,w) - [ Tle,T,wp F(r,e) dr g
- .

“2

[ » ’ * " N S
<F (ty,w) ] P (e, 7,,w) F (1,,w) "'z}

o
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- ~*
"< F(r,w) Fo(ty,w)

£

/ *
-v/ < F(tl.vl,u) > < F(tl,w) F (tz,u) > dr

1
o

* *
. N N
1S T (r,,T,,w) > < F(t),w) F (1,,9) dr,
(s}

1 2 '

+ [\ /ﬁ < I(e w) *( W) ><F w) B W) >dr. d

K J '-lnvll r‘ t20721 2> < (Tl' (sz ) Tl 72
o o

\
{3.12a)
» ) * - )
The quantity < F(tl.m) F (tz,w) > can be denoted by RFF(tl'tZ) and
(3.12a) can bYe written more compactly as:
Ryy(tl'tz) . RFF(cl.tz)
t.
!
T ST ) 2 Rl uey) dry

(o]
t2
“"’\ - * ~ {

- y < I (tz,rz,w) > RFF tl,vz) d?z

A -
! { » .
Cof \ (3.12b)

+ \f < P(tl,Tl,u) r (tz.Yz.W) > RFP(Tl,vz) le dv2 .
0 o

-
Narwy oL
%




R I

by ey

where
!
‘/’\ f * . *
RPF(tl'tZ) - \/ f G(t,,7,)G (‘2'72) < x(rl.w) X (rz,w)
[} o]
R
- )f ‘f\ *
) v/ u(tl,fl)b (tz.fz) HXX(TI,TZ) dTl d12
(6] Q
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>
d*r1 de

(3.12¢)

Equation (3.12) looks quite complicated, yet it expresses one of

the most important prooerties of y. It is unfortunate that many

of the interesting pruperties of y are given by nonlinear functions.

If the coefficients of the differential operator are strictly deter-

ministic, then the .ast terms in (3.12b) vanish and Ryy(tl,tz) is

giver by (3.12c) which agrees with the well known result ror non-

random systems. The cross correlation between the output and input

can be also found by using equation (3.10}):

*
o e i s
Ryx(tl'c2) < Y(‘l'“) x (tz.w)
- Cle . m) R (h8)) 8y
[o]
‘1 "
- U(g < r(tl’Tl'U) - i C(Ti,‘r ) Rxx
o o]
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Examiration of equations (3.11), (3.12b) and (3.13) sheds some
light on the stochastic Green's functions (Adomian, 1964) for a
differential operator which can be separated into a sum of the deter-
ministic operator L and the randum oprerator R. 1In all three cases,
the first term in the expressions is due to the deterministic operator
alone. 1f the randomness of the coefticients of [ vanishes, only the
first terms remain. The succeeding terms are .omplicated functiona of
random coefficients and deterministic Green's function for the operator
L. When higher order coefficients (v > 1) ere rardom, construction of
the resolvent kerrmel involves differentiation as indicated by (3.5b).
This is not tooc surprising for a relatively complicated problem. 1In
other physical problems, simila: complications arise, For exawple,
an expression for the dyad:iv Green's function associated with the
solution of a vector wave equation involves differentiation (Levire
and Schwinger, 1951).

In the actual solution of problems, construction of the resolvent
kervel presents major ditticulties. As shown by Adomian {1967),
Neumann serfes type of {teration can be successtully used when the
lowest order coefficient is etochastic. This tvpe of iterstion has
the advantage that the previously computed term is used in the rext
term sand so on. One can stop the iteration at any time when the re-
maind.r term becomes smailei than s prescribed value.

when only the iowest order coetficient ., is a randam function,
1t iv essy to show the convergence of the Neumann series expansion
(3.7}, Sutficilent conditions tor the unitorm convergence ot this

Neumann seyies expansion are simolv the hypotheses o! Thecrem 5 and 7
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of section 2.9. The hypctheses of Theorem 5 require that G(t,71) uo(r,w)

is a mapping of the space {i into space K and thar the maoping

dr G(t,1) uD(T,U) F(r,w)

of the Cartesian preduct space {2 x C into the space C is defined for
every well and every F(r,w) ¢ C. ( denotes the space of all continuous
functions defined on the ciosed interval [0,d}, ¢ < d. The sovace K
has been defined in section 2.9. The additional hyputheses of

Theorem 7 simply state that the kernel of th~ integral equation is

a Volterra kermel wit: prob. ility one. Under these conditions, the
integral equation {3.6) fs invertible and the Neumann series expansion
converges uniformly.

When the higher order coefficien s are also stochastic, it is
more difficult to carry out the Neumann s .ies expansion and to
establish the sufficient conditions for the convergence of the series.
It can be seen from (3.5) that the expansion as it stands requires
difierentiation in add.tion to integration. For computation and for
investigation of convergence, it is convenient to express the nth
order differential equation as n first-order differential equations

which are in the matrix form:

;:(t,w) = a(t,w) y(t,w) + U x(t,w) (3.14)




/3

where y(t,w) and y(t,w) are n-dimensionai vectors, a(t,w) is an n x n

coefficient matrix, U is an n x r matrix, and x(t,w) is arn r-dimensional
vector. This ailows the system to have v different inputs. 1In the
single forcing functien case, r is equal to one. In control system
-heory, this matrix formulation is called state space representation.
The methods of converting the single “th order differential equation
into state space representation ave discussed in many texts on control
system thecry and need no elaboration here (Schultz and Melsa, '967;
seRusso, Roy and Close, 1965; and Lapidus and Luus, 1967;. Because

of the original assumption that the differential operator can be
expressed as a sum of a deterministic operator ané a stochastic
operator, we assume that the coefficient matrix s(t,w) can be expressed

as

a(t,w) = Bz} + a(t,w) ) (3.15)

where B(t) is a matrix with deterministic elements and a(r,w) is a

matrix with stochastic elements. Using (3.15), the differential
equation (3.14) can again be written in the integral equation form

t
y(t,w) = F(t,w) + A f ¢(t,7) alr,w) y(r,w) dr,

o

(3.16a)

where

t
/\df o(t,T) (3.16b)

T e A i

-t —T—

e —




o

is the inverse operator of :he differential equation

y(t,w) = 3(t) y(t,w)y . 3.17)

The term F(t,w) is obtained by applving the inverse operator (3.16b)

to all forcing terms and non-zerc initial conditions. In control

system terminology, ¢(t,T) is called the state transition matrix. In

this case, A is equal to one. The Neumann series expansion of (3.16a)

gives che following iterative solution:

o
yw = 3 ATy (6w
—— n=(

yo(c,w) = F(t,w)

t
.vl(t,.w) = / o(c,7) a(r,w) y (r,w) dr
(o]
t
j o(t,r) a(r,w) F(r,w) dr ,
[o]
(3.18)
or, in general,
t

yn(:,w') - f o(t,r) a(r,w) yn_l(hw) dr

Q




As before, the resolvent kernel for the integral equation (3.16) can

be written in terms of iterated kernels by

=

no,
re,v,A,w) = E% A “n+1(“"'”) s
n-

where the iterated kernels are defived by the recurreuce formula

L
Kh(t.f,w) - i K(s,fl) Km_l\vl,f) dvl

o

0

and Kl(t.f,w) = K{t,7,w) = o&(t,7) a(r,w) . (3.19)

The soclution to the matrix stochastic differential equation (3.14)

can be written in terms Ot the matrix resolvent kernel as

y(t,w) = F(t,w) + A / ree,v,A\,w) F(r,w) dr . (3.20)

————a e ()

This expression is completely analogous to (3.10). Construction
of the resolvent kernel in (3.10) requires diiferentiation in addition
te integration, whereas, in this case, the resolvent kernel can be
constructed by Iterated integration and matrix multiplication. The
previcusly computed terms are used (o compute the next term an’ 8o on.

The ensemble average of y(t,w) is

t
f
< y(t,w) >= < F(t,w) >+ \/ < P(e,T,w) > < F(r,w) >dr .

[

(3.21)
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The stochastic Gr:en's function for the ensemble average of y(t,w) is

simply < I'(t,v,w} >. The expression for the covariance matrix is

<y(ew yTe,w > = <FeLw e >
t
~2
+ ! < F(tl,w) F*(?,w) > < Ff(tz,T,w) > dy
\Io -
t
~2
+ J <T(t,,7,0) > < F{r,u) F*(:z,w) > dr
o —— e
& 5
+ b/\ /‘ < F(tl,f,w) F(r,w) F*(a,w) Pf(tz.a,w)>drdo .
[+ [}

(3.22)

where t denotes complex conjugate transpose (hermetian conjugate) of

i the matrix. The ensemble averages of (3.22) also separate in the

last term because I'(t,r,w) and F(r,u) are statistically independent,

but this cannot be shown with the matrix notation because the order
of matrix mulcipiication must be preserved. Separation of ensemble
averages takes place after "e matrix multiplication has been carried
out.

A sufficient condition for the convergence of the Neumann series

(3.19) can be given by & theorem analogous to Theorem 4 >f section 2.9.
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sheorem 1. Let o(t,7) a(t,w) = k be 2 mapping of the space {1 into i

%
the space K and let the mapping T of the Cartesian product space
1 x C into the space C be defined for every wefl and every F(r,w) ¢ C

by ¢

T(w,t,F(r,w)) = / o(t,v) a(r,w) F(r,w) dr . i

o :
(3.23)

In addition, let the kernel ¢(t,7) q(7,w) satisfy the condition

P (u: o(t,7) a(r,w) = 0} = 1 (3.24)

for gvery 0 <t < 1 < d, then the integral equation

t
y(t,w) = F(t,w) + A / o(t,7) a(r,w) y(r,w) dr '

o {

is invertible for every finite A.

g e

Proof. Consider the norms of the iterated solution:

Fy, (a2 LRG0 ] §

4

where || || denotes any suitable norm for the matrices in the Banach l
Space. ? f
g B

i

t ;

X |

Iy e = I | olt,) alr,0) y (r,w) dr | f

o .

*
The space K has been defined in section 2.9. .
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t
< [ hewn atrw | FG o
o
<t |let,m) am,w | | F(r,w) |
The last step follows because the norms || ¢(t,7) a(T,w) || arnd

|| F(r,w) || are real non-negative numbers.

t
s
” Yz(t,w) ” - ” / O(cp'r) (I(T’w) )'1(1’,“’) dr ”
UO
t
s [rleen atw P Faw | ar
[o]
% 2
< =57 e, a@r,w [I° || F(r,w) i
or, in general,
tn n
Iy (e s 57 I en a7 | Frw) |

(3.25)

or the norm of the nth transformation T" satisfies the following

inequaliry

n
[ S f‘._ I ece,m) atr,w " . (3.206)

———
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Hence, by Theorem 3 of section 2.9, rae integral equation is invertible
and its Neuman: series expansion converges uniformly for all finite t
and A. In this case, A\ = ],

Sufficient -onditions have been given for the invertibility of
the stochastic integral equation (3.16) and for the convergence of the
Neumann series expansion. These conditions state that the solution
exists for almost all sample functions, but the theorems gay nothing
about the existence of expected value or covariance of the soluticn.
The sample func‘ions y(t,w) may not be second-order stochastic pro-
cesses. A stochastic process y(t,w) is said to be second order if
< | y(t,w) ]2 > < w js satisfied.

Consider now an example which demonstrates that the mean or co-
variance may not exist. Assume that the probability distribution of
the amplitude of the stochastic coefficients Ov(t,w) is Gaussian
(normal). The normality i8 conserved under repeated differentiation
and 1ntcgratior‘,.“r Hence, in computing < y(t,w) > or < y(tl,w)
yT(tz,w) > by averaging the {rfinite series term by term, we are
comput ing higher and higher moments of Qv(t,w). Higher moments of
the zero mean Gaussian random variavles are related to the second

mowent , 72 , by the following expression (Miller, 1964):

NS

<y o> W | < ¥y o Hn(O) , (3.27a)

*
Discussed in section 2.8.
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where H“(O) is the nth Hermite polynomial given by

o n=0,1,2,... (3.77b)

and

H2n+).(0) - 0 n = Ollﬁzt"' (327‘:)

Thus the even moments —» as n —* . Because of this, the convergence

of the averaged series requires further investigation. The terms in

the averaged series are

<y (6,w) > = <F(,w) >
t
<y, (e,w) > o= o< (e, 7) a(r,w) > < F(r,w) > dr
— o
t
- < r(e,r,w) > < F(r,w) > dr
o

(3.28)

The ensemble aversges separate in (3.28) because of the statistical

independence of a(r,w) and F(v,w). The norm of the genersl even term

is
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<y, (Ew) 2.
‘ “2k-1
I ) ’ < f(t"Af Yty oty ) 2 <l @) > dt mmde,
o 0
t2k
ST ALY (6 6y < (e, >
2k
L k- 3 ‘
< (;k)' n2 1 ] < M’y( > Il AN F(t,w,) = I ,

where we have chosen ror the norm of the averaged matrix < 7 > and

upper bound of its elements. The odd momenis vanish becszss =lements

Y are zero mean (Gaussian processeg. Recal! that 7 is 2n o x o matrix.

For Gaussian random variables, we have:

“ 1]
<ME s et K 1§51* k=0,1,2,...
2 k!
and
Ve k=0,1,2,... |,

(3.30)

2 X
vhere < ® > is the upper bound of mean squares of the elements.

Hence, the norm of the general terw of the Neumsnn series expansion {s:
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2k

| <y e > s EE— <’ S crew |
2 k! —_—

(3.31)

The inequality (3.31) means that the averaged Neumann series expansion
converges unitormly ever if the stochasric coefficient matrix consists
of Gaussian random variables. Similar analysis may be applied to the
Neumann series expansion of the covariance matrix {(3.22). The only
term zhat presents any complications in the analysis is the last
term of (3.22).

Inspection of (3.21) and (3.22) shows that for calculation ot
the second-order statistics of the output process, knowledge of all
the monents of the coefficients is required. In many physical problems,
such complete knowledge is lacking or 1t is ditticult to obtain. In
such cases, one must be satisfied with the approximate solution.
However, the iterative mathematical approach suggests that an ‘terative
approach could also be used in constructing & physical model. One
could obtain exper imentsl data tor computatfon ¢t the mear and co-
variance of the stochastic coefficients. Then the first tew terms
of (3.21) and (3.22) could be used to calculate the approximations
for the mean and covariance of y{t,w) which could be compared with
experimental results. It the ayreement between cslculated and experi-
axntal results is unsatisfactory, more complete data should be obtained
on the stochastic coetficients and the procedure should be iterated

untii .he results become adequate.
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(If the stochastic coefficients are Gaussjan, then the knowledge
of their second-order tatistics 18 sufficient for complete solution
of the problem.)

In the solutior of an actual problem, the Neumann series
expansion becomes quite involved. For this reason, other methods of
solution are investigated in the. tollowing sections. The advantages
of the New ann series expansion are that it is more generally applicable
than other methods, sufticient conditions tor convergence are Known,
and it provides usetul insight to the nature of stochastic Green's

functions.

3.3 construction of Resclvent Kernel in the Case of a Degenerate
Integral Equatiou

The construction of the resolvert kernel by means ot the Neumann
series expansion is, in general, laborious. For this reason, it 1s
desirable to inpvestigate other methods ot solving the integral equation
(3.16). Closed rorm solutions to the Fredholm and Volterra integral
equations can be tound 1t these equations have dogenerdte xernels
(Courant and Hilbert, 1Y53; Hildebrand, 1952; and Kintorovich and
Krylov, 1¥58). A kernel is said to be degenerate if it can be rep-
resented in the torm of a tinite fum of products of tunctions of &

single (deterministic) variahle:

K(t,r,») = 5: ck(t) bk(T,w) SN (3.32)
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Such representation is possible if, for example, the Green's
function of the deterministic part of the differential equation (3.2)

is a sum of exponentials. The, the terms in (3.32) are:

ck(k) - Kk exp [ 8 t ] (3.33a)

and

bk(f,w) = oxp [ -8, 7 ] ao(T,w) , (3.33b)

4
where 8, and Kk are complex numbers. QO(T,w) is the random ccefficient
of the v = 0 term in (3.1). By considering kernels of the integral
equation which can be represented by (3.32) 2nd by (3.33) we have
lost generslity in two ways:
1) An exponential solution of the form (3.32) and (3.33)
implies that the deterministic equation ie time-invariant.
2) The form of bk(T,W) in (3.33) implies that only ao(v,w)
is stochastic. This restriction will be removed later
when a state function representation of equation (3.2) is
cor._idered.
The first restriction is the penalty we pay for the simplification
of the computation. The impulse response of most time-invariant
linear systems consists of a sum of exponentials (Schultz and Melsa,
1967). Exceptional cases are when the impulse response is either a
constant, t or an exponential times t. From the control system point

of view, the exponential soiutions are the most c..mon. Thus, even
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with this specislization, we are still considering an interesting
case.

Also, representation of an arbitrary kernel by a degenerate kernel
leads to & useful approximation technique. This will be discussed

after development of the sslution {or degenerate kernels.

3.4 Single Term Degenerate Kernel

To demonstrate the easential ideas, we start with the simple case
where the degenerate Kernel consistez of s single term. The integrsl

equation is

t
y(t,w) = F(t,w) + A jp K(e,7,0)  y(r,w} d7, (3.34e)
o
where
K(t,7,w) = ¢(t) b(r,w) . (3.34b)

The functions c(t) and b(r,w) are

c(t) = cz't

and

b(r,w) = e °7 a(r,w) , (3.35)

|

s
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vhere a(r,w) 18 the randomly time-varying coefficient. Note that the
factor c(t) may be taken outside the integral in Equation (3.34a) and

the rews{ning integral iz some constant independent of t. Thus, y(t,w)

must be of the form

y(e,w) = F(t,w) + A(t,w) c(t) (3.36)
where A{t,w) is, for the time being, an unknown random process.
Subatituting Equation (3.36) into Equation (3.34), we obtain:

[N
Alt,0) e(t) = A J’ c(t) blr,w) F(r,v) dr

[¢]
t
+ X /\ c(t) b{r,w) c(r) A(t,w) dr
J
° (3.37)
Solving for A(t,w), we have:
t t
A(t,w) = A exp [k /ﬂc(f)b(7.m)] /NEXP[‘KC(O) b(o,w) do F(r,w)b(r,w) dr.
uo Jo
(3.38)

Substituting Equation (3.38) inte Equation (3.36), the solution of

the integral equation becomes:

y(e,w) = F(t,w)

t t T

+ c(t)exp[x \jFC(T)b(T,N)dT]u/\exp[-K\/ﬁc(o)b(o,m)do] F(r,w)b(r,w) dr.
o o o (3.39)
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y(t,w) = F(t,w) |

< t T
1o r
+ c(t) exp{% \/ﬁC(T)b(T,w)dTI /’expt-k /ﬂc(o)b(o,w)da}F{T,w)b(v,w)df.
JJ (W)
o

(o] o

(3.39)
1
Using Equation (3.35), and recalling that A = -1, we have
i
y(t,w) = F(t,w) g
i t t T
{ /‘ 7 /* r s r
-expl - | q(r,w)dr J \/ exp‘(k/ a(o,w)do | + s(t-1) | @(T,w)F(r,w) dr.
LJ L
o o
(3.40)

In Equations (3.39) and (3.40), the resolvent kernel of the integral

equstion (3.34) can be identified.

. t T
Me,r,w) = c(t) exp{k\/ﬁc(o)b(c,W)doJ exp[-h\/hc(a)b(o,w)do}b(v,w),
[ o
(3.41)

or

. t , ‘ T
I'it,r,w) = expl-\jpa(a,w) doJ exp{a(t-v)J \/ afo,w) do] alr,w)

o "o

(3.42)
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If a(r,w) were an ordinary function of time instead of a random
function, Equations (3.39) and (3.40) would be the complete solutions
to the problem. In the case of stochastic coefficients, we are still
faced with the difficult problem ¢f computing the statistical measures
of y(t,w). We shall investigate the compvtation of the expected value

of y(t,w) first. Averaging Equation (3.40), we have

< y(t,w) > = < F(t,w) >

t .t

I r . ‘]
- < exp[-fa(hw)dTJ / exP'_ /a(c.w)do| a{r,w;> exp[s(t-7)] < F(r,w)>dr.
v |

J
o o o

(3.43)

The difficulty arises in computing the following expected value:

T .
i

¢ L
. S
< exp[tjra(v,w)de /R exp / a(o.u)doJ a(r,w) >

-
o

o] o

(3.44)

This expscted value is a nonlinear function of a(t,w) and we must resort
sither to nonlinear transformation techniques or pover series expansion
of Equation (3.44). To shorten the notation, let
t
7(t,w) = J/ a(r,w) dr

o
(3.45)

e e NN
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Then, the power series expansion of (3.43) becomes:

< y(t,w) > =

<F(t,w) >

t
-fexp[s(t-f)]< exp(7(r,w)-7(t,w)) a(r,w) ><P(r,w) >dr

o

s < F(t,w) >
A
-Ji exp(s(t-7)] < ag(r,w) [1 + (2(r,0)-7(7,w)) +5‘ (7(1.m)-7(r,t~'))2 +

o

ST -7 (E0)° > < B(r) > dr

= < F(t,w) >

t [*+)
-v/exp[a(t-T)]:E:%T < a(T,w)[7(T.W)'7(C.W)]n > <F(r,w) > dr . i
) n=0 ;

(3.46)

Conditions for the convergence of the power series expansion (3.4%6) can

S s

be easily establiehed. By an argument similar to the one used in

section 1.2, it can be seen that (3.46) converges even when g(7,w)

<t T g e

i is & Gaussian procesa. The first two terms of the power series

expansion are quite easy to compute:

s ot e - e 3 T

Y
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c
< y(t,w) >~ < F(t,w) > - fexp [8(t-1)] < a(r,w) > < F(r,w) > dr

o

(¥

t 7
- f [exp [s(t-*)] R__(7,0) < F(r,w) > dr do
J o
o o

 f
+ / / exp [8(t-7)] R (7,0) <F(v,w) >dr do .
\J' V] aQy
° e (3.47)

(In using Rm(-r.o) for < q(r,w) o(o,w) > we have implicitly assumed
that q(r,w) is a real process. This assumption is not essential and
can be easily removed when g(v,w) is & complex process.) Of course,
if q(r,w) is a process with zero mean, the integral containing

< a(r,w) > drops out and the spproximation becomes:

t T
< y(t,w) > = < Fc,w)> - / j exp [s{t-1)] Rm(v,c) < F(r,w) > dr do

-
o 0V

t t
+\[ [exp (a(t-7)] ch("'“) < F(r,w) > dr do

o o
(3.48)

From (3.47) or from (3.48), vwe can make some observations. First, if
< F(t,w) >~ 0, then the mean of the solution < y(t,w) = 0. On the

other hand, if < F(t,w) > ¢ 0, the contribution from the random
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parameter g(t,w) does not vanish even if < g(t,w) > = 0. This follows

from the fact that

t T
[ [exp[s(t-‘r)] R(1,0) < F(t,w) >dr do ¢
v
o o

t t
fJ[exp[s(t-T)'] R(r,0) < F(r,w) > dr do
o o

(3.49)

Similarly, higher order terms of the power series expansion (3.46)

&lso contribute to the mean value of < y(t,w) > .

Next, we assume that F(t,w) has zero mesan. Then, the auto-

covariance of y(t,w) is obtained by using (3.40) and (3.45):

<y(ew) v (gyu) >

" Rpp(tyity)

fl

- , exp[a(tl-t)] < exp[r(v,w)-y(tl.w)]a(r,w) > RFF(T,tZ)dT

[0

t,

- emele(e, ] explr (W) -y (5,0 a (r,0) > RL(e T)d

=3

~ A
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t, ¢t
152 .
+ ffup[c(tl'?)'l (tz'a)]

o o

< exp((7(1,0)=7(e,0)] + [7(0,9)-7(t,,0)1"] a(r,0) o (0,6) >

RP?("O) dr do

(3.50)

The two center terms can be expanded in the same manner as in (3.46).

An analogous expansion of the last term can also be made.

< exp([7(r,w)-y(c,,w)] + {7(o.w)-7(t2.w)]*]a(v.w) a (0.9 >
= <a(rela (0.9)(1 + (110706, 0] + (70,9 - 7(c,0)"
+ 300 - 2w+ e - e

1 * » n
+ T [r(r,w) - 7(tl.w) +7 (o,w) - 7 (tpw] ... >

n

o 1 * » *
- o7 calr,wa (o,w(r(r,w) - 7t @) +y (o,w) -y (r,,w)] >

ne(

2I

(3.51)
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The expansion irvolves higher snd higher woments of a(t,w) but does

not involve repeated integration as the Neumann series expansion does.
The power series expansion (3.51) demonstrates that knowledge of all

the moments of stochsstic coefficient o(t,w) is required for computation
of the correlation function R (tl,t ). We must compute the moments

yy 2

* * * n
<alnw) o @r,e) - 7,9+ e - 70" >,

where 7's are given by (3.45). Obviously,

* w * n
<afr,w) g (o,w)r(r,w) - 7(t1.w) + 7 (o,w) - 7 (tz.w)] >

n

$ < qlr,w a*(c,w) > < {r(r,w) - 7(t1.w) + 7 (o,w) - 7t(t w)] >,

20
(3.52)

It q(t,w) is a Gaussian process, then the higher moments of the
process can be computed from the second-order statistics. Hence,
& complete solution can be obtained from the knowledge ot the second-
order statistics.

If a(t,w) is a process with zero mean, the simplest approximetion
of Ryv(tl.cz), which still takes into account the stochastic coefficient,
is obtained by disregarding all but the first terms in the power series

expangion of (3.50)

: ' *
Ryy(cl,cz) o RFF(tl‘LZ) + ‘  e ~ l-v)-- (t2~v)] R,T(Y,o)krr(v.o)dvdo

<

(3.53)
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f } 3.5 p-Terw Degencrate Kernel
In this section, the integral equation
t
y(t,w) = F(t,w) + A [K(t,f.w) y(r,w) dr (3.54a)
.Jo
vith the kernel
D
K(z,r,w) = Z ¢ () b _(1,0) (3.54b)
k=]
is investigated. We agsume a solution of the form
0
y(t,w) = F(t,w) + Z A (t,w) c (6) (3.54c¢)
=l
Substituting (3.54.) into (3 S4a), we get
n t n
Y oA e (0 = A ) [ e () b () ] F(rw) dr
{=] o kel
[ .o
+ A j ? }: ck(t) bk(v,w) J 5:’ Aj cJ (v) dr
o kel jaml
(3.55)

"
Chapter II, Kantorovich and Krylov (1958)
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By equating the coefficients of Ci(t)' we obtain n simultaneous

integral equations for the unknowns Ai:

n t
A1 - A 2: \/ﬁ AJ bl(r,w) Cj(T) dr
=1 o
t
- A\ /‘ bi(T'u) F(r,w) dr
o (1=1,2,..... a) . (3.36)

To simplify algebra let:

bi(r,w) cj(f) - Bij (3.57a)

and

t
~

(o]

With this notaticon, the siwmultaneour equations (3.56) can be

written zs:

A1 - X\ ; E: (Ajaij) dr = Afi
) i=1 (L= 1,2,....0) ,

{3.58)

/ b (v,w) F(r,0) dr = £ . (3.57b)
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which car be expressed in the matrix form as:

A-N | BAdr = XM . (3.59)

Te find the unknown functions Ai’ we must solve the matrix integral
BEquation (3.59). Because the integral Equation (3.54a) is a special
cage ¢i the more general matrix formulation of the problem, the

iscusaion of further details of the solution are pnstponed until

the next section.

3.6 State Function Formulazion

State function formulation has been widely used in modern «ontrol
system theory and in formulation of Lsgrange's equations in ciassical
mecherics. For & system that mey be represented by liwee: differencial

equations, the state space zquations are

\.'(t,w) = a(t,w) y(t,w) + U u{ ,w) , (3.60)

where y(t,w) is &n n-dimensjonal state vector, a(t,w) an n x n system

matrix, U 18 en n x r control matrix and u(t,w) 1is an r-aimensional

control vector. Here, the terminology of control aystem theory has
been used. General mathematical terminology or terminology from
classical mechanica could have been used equally well.

Let each wember of the system matrix be geparable in a determin-
istic term and a random term. In particular, let the members of the

system macrix be of the form
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aij(t’w) - ”1 + Qi (C,W) ’ (3'61)

3 3

where Bij iz a constant and the ai (t,w) are stochastic processes.

3

Because Bi ig assumed to be & constant, the deterministic part of

b
(3.60) is a linear time-iavariant differential equation. The sclution
to the deterministic differential equation can be expressed in terms

of the state transition . itrix ¢(t)}. The methods of conetruction of

the state tranegition matrices (STM's) for linear time-invarian: systems
are discussed in several texts on control system theory (Schultez and
Melsa, 1967; Zadeh and Degoer, 1963; and D¢ Rugso, Roy and Close, 1965).
Therefore, it is assumed that the state transition matrix for the
deterministic part of the state space equation (3.60) is known. Using
the state transition matrices, the gtate space equations can be con-
verted into a matrix integral egquation

t
y(t,w) = F(t,w) + A J[ K(g,7r,w) y(r,w) d7 , (3.82)

o

where y(t,w) and F(t,w} are n-dimensional vectors and ¥{t,r,w) 1is an

n x n matrix. F(t,w) 1s the solution of the deterministics part (part

with deterministic coefficients) of the state space equations. The

kernel of the integrel eyuation is

K(t,7,w) = ¢{t~7) a(r,w) . (3.63)

P By ot R . IR T £

e
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All the matrices in (3.73) are n x n matrices. &{t-1} is the

stete trunsition matrix. For linear time-invariant differential
equations, the state transition matrix ¢(t} hes the following useful
properties (Schultz and Melsa, 1367):

1) It is nonsingule~ for sll finite values of t.

2) °(‘1) o(c,) = o(c, + ‘2)

3) oty ! = o(-t)

4) o(t)" = o(or) . (3.64)

Using the second property, the kernel of the integral equation becomes

K{t,7,w) = ¢(t-7) q(r,w)

= 9(t) o(-7) a(r,w)

= ¢(c) b(r,w) , (3.65)

“.re, for simplicity, the product ¢(-7) a(r,w) is denoted by b(r,w).

Now, the integral equation (3.62) has a degenecate kerm~l and can be

solved by assuming a8 solution of the following form:

y(t,w) = F(t,w) + ¢(t) A(t,w) , (3.66)

where A(t,w) is an n-dimensional vector. Substituting Equation (3.66)

into Equation (3.62), we have:
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t
o(6) A = A [ () b(rw) F(r,u) dr
——— ‘\Jo
t
+x ] e(t) b(r,w) elr) A(t,w) dr. (3.67)
J
o

Premultipiying both sides of Equation (3.67) by o‘l(t) [0-1(1:)
exists according tc the first property of Equation (3.64)) and

rearranging gives

t

t
[ A(t,w) - A fb(nw) (1) A(r,w) dv} ] = kfb(v.w) F(r,w) dr.
S .
[¢]

o

(3.68)

This matrix integral equation muat be solved for A(t,w). This can be

done by again using Neumann series expansion; {.e.,

o

A(t,w) = z A (t,w) , (3.69)

n-O

where the An(t,w) terms are given Dy the following iterative solution:

t
Ao(t,w) - fb('r,w) F(r,w) dr , {(3.70a)

o
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and
IS
Al(c,w) = j b(r,w) &(r) Ao(r,w) dr
[+}
t T
+ [ b(r,w) ¢&(r) b(s,w) F(o,w) dr do , (3.70b)
v0 VO
or, in general,
t
A (e = [ bW em 4 G ar. (3.70¢)
(o]

Sufficient conditions for the convergence of the Neumann series (3.69)
sire given by Theorem 1 of section 3.2.

Using (3.66), the expected value of y(t,w) is:

<y(t,w) > = <F(t,w) > + o(t) < A(t,w) >

————

= < F(t,w) > + ¢(t) Z <An(t.w) >,
n=(

where An(t,w) is given by iterative integrals (3.70a), (3.70b)
and (3.70c). Here sgain, it can be observed that 1f < F(t,w) > % 0,

< y(t,w) > does not necessarily vanish when < a(t,w) > = O because

———ttreana

expressions for < An(t,w) > contain higher moments of a(t,w) which

may not vanish. The first two terms in the Neumann sgeries, Ao(t,w)

and Al(t,w), can be computed from the second-order statistics; for
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higher order terms, we need more complete statistical knowledge of the

stochastic parameter matrix a(t,w). For the approximation which uses

the second-order statistics of the stochastic parameters, we have:

t
!
<y(t,w) >= < F(t,w) >+ ] $(t-7) < a(r,w) > < F(r,w) >dr

o

T

Ia

t
+ fj o(t-1) < a(r,w) ¢(r-0) a(o,w) > < F(o,w) > drdo.
0o O

(3.71a)

If the coefficient matrix a(r,w) has zero mean; 1i.e.,

<a(r,w) >=0,

then, (3.71a) simplifies further and it becomes:

< y(t,w) > = < F(L,w) >

| S ¢
+\/ \/P e(t-7) <a(r,w) ¢(r-0) a(o,w) > < F(o,w) > dvdo.

o o
(3.71b)

The Equation (3.71b) demonstrates how the mean value of y(t,w)
depends on the second moments of the coefficient matrix. Of course,
in this approximation, we neglected the functions which contain higher

moments of the coefficient matrix.
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The expression for the covarience matrix is obtained by post-

multiplying y(tl,w) by the complex conjugate transpose of y(tz,w)

(hermetian conjugate denoted by T) and averaging; 1i.e.:

Ry (£106)) = < y(e,0) yPeey,u) >

= <F(r;,0)) + e(t)) At (F(ty,) + 0(r,) ACey,0))T >

= <R(ep,w) F(ey,u) >+ <o) ACt),w) Fr(e,,v) >

+ 1
+ < F(tl,w) A (tz.w) ¢ (tz) >

+ < o(tl) A(tl.w) A*(tz.w) °+(‘z) >

- Rrr“v"z) + 0(t1)< A(tl.w) F*(cz,w) >

+ <F(ep0) AT, > 0¥ (ey)

+ +
+ o(t,) <A(t,,w) AT(e,,w) > ' (t,)
! ! 2 2 (3.72)
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1f only the first terms of the power series expansions are used, an

approximate expression for the covariance matrix Ryy(tl,tz) is

Ryy(tl.tz) =~ Rop(t),t))

t
-1
\ -~
+ o(t,) f o (1) <alr,w) >R“.(rl.t2) dr

[+

t
2 -t
+< f R‘FF(tl'T) < a*(f.w) >0 1 (v) dr ) o*(tz)
[o]

t, t
‘1[\2 '1 ‘1* . 1’
+ ®(t1) <u/ u/ ® (1) Raze('r.o) ®  (0) dr do > ¢ (tz) ,
e 0 (3.73a)
where
Rang(f.O) = < {a(r,w) F(1,w)) {alo,w) F(o,w)}t > ] (3.73b)
The approximate expression for Ryy(tl,tz) simplifies further if
<a(r,w) > = <ql(r,w) > = 0
Then, (3.73a) becomes:
Ryy(tl,tz) = RFF(tl.tz) +
t, ot
Al a2 it
voep) ([ /e e R gt 67 (@) o dd> oty
J F 2
o o (3.74)




104

The equation (3.74) also shows some interesting results. The first
term in (3.74) is the contribution of the deterministic part of the
differential equation. The next term is the simplest term which takes
into account the randomness of the coefficients. To compute additional
terms in the expansion, we need to know the higher moments of the
coefficients. If only the second-order statistics of the coefficients
are known, (3.74) is se far as we can go without additional knowledge.
In the state space formulation, one has considerable freedom in
the selection of the coefficient matrix representation. The evaluation
of the truncation error is greatly simplified if one can select a
representation for the coefficient matrix which will make the Neumann

series expansion of A(t,w) an alcternating series. Then, for a conver-

gent series, the truncation error is smaller than the tirst term
neglected, provided the norm of esch term is smaller than the norm

of its preceding term.

3.7 gGeneral Remarks

In using the degenerate kernel approach for solving the Volterra
integral equation, we still have to resort to Neumanu series expansion.
From the standpoint of computational difficulty, there is no essentisl
difference between the straight Neumann series expension and the
degenarate kernel spproach. Selection of the mcthod depends on the
physical problem and computationsl convenience. For example, in the
study of wave propagaticn in random media, iteretive integrals of the
Neumann series expansion have the convenient interpretation of
repeated scattering of waves. On the other hand, in :he case of a

control system problem, the deterministic transition matrix may be
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already known and, therefore, the degenerate xernel method may be
convenient. Both methods of solution converge under the sam¢ general
couuitions. Hence, we have two complementary methods for solving the
stochastic Volterra integral equations. Other methods, such #s the
Fredholm method and the Hilbert-Schmidt method, do not offer any
computational auvantages. To use the Hilbert-Schmidt method, one has
to solve a pair of first kind integral equations. This problem is no
easler than solving an integral equation of the second kind. Fredholm
theory has been very important in the development of the classical
integral equaticn theory, but to use the Fredholm method for conmstruc-
tion of tie resolvent kernel is prohibitively difficult ip practice.
Many aribtrary kernels can be approximated by the degenerate
kernels. A Taylor series expansion of an arbitrary kernel can be used
for approximating it with a degenerate kernel. For example, a kernel

sin (t ) can be approximated by

t373 t5 5
sin (¢t v) =~ ¢ v - ; + -;%— . £3.75)
3. :

A Fourier series expansion of the arbitrary kernel or specisl inter-
polation devices can alsc be used. The use of the method of moments
for solving integrsl equations is equivalent to the replacement of an
arbitrary kernel by 8 degenerate kernel. In the case of deterministic
integrai equations, the estimates of errors caused by the replacement
of a given kernel bty a degenerate one are known. One such theorem,
slightly moditied tor stochastic application, is stated below

(Kantorovich and Xrylov, 1958).

b
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Theorem 2 . Let there be two kernels, k(t,7,w) and K(t,7,w) and let

it be known that

t

1
/ :K(r.'r,w) - k(t,7,w) | dr <h (3.79)

-

t
[o)

alwost everywhere P (a.e.P.), and that *he resolvent kernel y(t,Tt,w,A)

of the equation with kernel k(t,7,w) satisfies the inequality a.e.P.

t

ri
\,-" [y(e,v,w,A\)| dr <B , (3.77)

t0

and also that
[£(c) - fl(t)l < na.e.P. . (3.78)

Then, if the following condition is satisfied s.e.P.:
1 - IA] h(t + [N] B) >0 (3.79
the equation

Y

y(E,) - A K{t,7,w) y(~,w) dr = £(c,w) (3.80)
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has 8 unique solution y(t,w) a.e.P., and che difference between this

A
solution and the solution y(t,w) of the equation

t
A rl
y(t,w) = A /7 k(t,7,w) y(r,0) dr = fl(T.W) ‘1.81)

t
Q

is smaller a.e.P. rthan

——

NIA h(l + [A] 5)2
1 - N w1+ N B

ly(t,w) - y(t,0)| < + 1 (1 + |A| B),

(3.82)

where N 15 the upper bound of [f(t,w)| a.e.P.
Proof 1s a trivial modification of the determin.stic proof given
by Kantorovich and Krylov (1958). The theorem is less than satisfactory
for many interesting processes; however, the hypotheses of the theorem
are too restrictive and the conclusion ot the theorem should give the |
mean square anproximation error. To make the above theorem applicable

to the Volterra integral, we define the Volterra kernels as followa:

- 0 T >t ; (+.43)

3.8 Conclusicns
This chapter presents two methods for obtaining expressiors for
. , th
the ensemble average and covariarce of the solution ot an n order
difterential equation with stochastic coetticierts. In both cases, it

is assumecd that the coefficients of the difterential equation are




separable into deterministic and stochastic ccefricients. The

problem now becores a problem of solving a Volterra irtegral equation
w:.n a stochastic kernel. In the first method, the problem is solved

by the Neumann series expansion. The Neumann series expansicn is a
series of iterated integrals. A previously computed term is used

to compute higher orde. terms. Sufficient conditions for the conver-
gence of the Neumann series c-e given. The Neumsnn series is used

to find the resolvent kernel of the stochastic integral equation. The
ensemble averages and covariance functions of the solution are expressed
in terms of the resolvent kernel and the corresponding statistical
messuregs cf the input process. The k.rnels of tnese integral expressions
for the statistical measures of the solution caun be interpreted as the
etochastic Green's f -ctions.

In the second method, it is assumed that the deterministic part of
the differential equation is time invariant. Then, in many casss, the
kernels of the integral equction are degenerate kernels. In these cases,
we have s slightly different method for solviny the Volterra integral
equation. We still have to resort to Neumann series expansion for the
complete solution of rhe integral equation. From the standpoint of
computational difficulty and convergence of the solution, there is no
escential difference uotween the two methods.

However, we have two complemcntary methods of solving the problem.
Applying these methods to some very simple equations and just computing
the first couple terms of the expansion, ‘'e are able to observe some
Interesting resulte. Even if the stochastic coefficients have zero

mean, their contribution to the mean value nf the solution does not
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vanish. This Jdemonstrates that the average of the solution of a
differential equation with stochestic coetficierts i{s not necessarily
the sume as the solution of the averaged equation. Both methods of
solution also show the: crxpressiors for the second-order statistics

of the sclution of linear stochastic differentiel equations requires
knowledge of all the moments or stochastic coefficients. An excep-
tional case is that in which the stochastic coefficients are

Gaussian processez. Then, the knowledge of the second-order stetistics
is sufficieut for the complete solution.

In both cases, the computation is simpiified if the stste space
formulation is used. The use of the state space formulatiorn has the
further advantage that it connects modern control system theory with
this work.

The concepts developed in this chapnter will be generalized in the
next chapter to partial differential equations and applied to the
propagation of the scalar wave function ir a randomly time-varying

med fum.




CHAPTER 1V
WAVE PROPAGATION IN A RANDOMLY TIME
AND SPACE VARYING MEDIUM

4.1 Introduction

The problem of propagation of an electromagnetic wave in a

®
vandom continuous medis has beern studied extensively by many workers;

however, in almost all cases, attention has been limited to a random

medium with space-varying statistical propertles. In these studies,

ok
a sc-called "quasimonochromatic' sclution has been assumed. This

quasimonochromatic assumption essentially neglects the time-vavyuing
properties of the meuium. In many cases, this agrumption may very

i well be correct, for example, in the case of the propagation of light

through frosted glass. In cases when e¢ne deals with wave propagation
through het or very energetic media such as the atmospheres of stars
or plasmas, the guasimonochromatic assumption is clearly incorrect.

In other cases, such as in the study of synchronization of spatially

j separated frequency standards, doppler broadening of radar signals

or interaction of two signels in 8 nonlinear medium, the small fre-
quency shifts caused by the randomly time-varying medium may be the
; important questions under study. Tn all cases, the validity of the

quasimonochromaticity assumption should be verified.

See the references in sectiorn 1.3.

*ie
One assumes that the solution of the wave equation is essentially a

sinusoid at a single frequency, 1f the source is a sinusoid at a
single frequency.
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It is assumed that the dielectric permittivity e(t,P,w) is a
random functior of time t and position P. It is further assumed that
it can be separated into a comstant term €, plus a randomly space-
and time-varying term. The wave equation (4.1) for the electric field
E can be derived from the pair of Maxwell's equations that connect the

*
electric and magnetic fields

2
- I ) e - aJ
U x Y xE+ ac2 (uer) My 3¢ .1)

vhere J is the current density.

T¢ the guasimonochromstic sssumption, it is sssumed that
2 _ 2
ﬁ_i Ho €E = o€ a‘g E , (4.2a)

and that the equation (4.1) can b~ written, in the current free

region,

- 2 -—
VXx9X Eo T eEo =0 , (4.2b)
where E = E eist.
[o]
These assumptions are avoided in this dissertation. Instead, it
is assumed that the spacisl gradient of the dielectric permittivity

over the distance of one wavelength is small:

*
An overbar - denotes vectors.

O
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CHAPTER IV
WAVE PROPAGATION IN A RANDOMLY TIME
AND SPACE VARYING MEDIUM

4.1 Introduction

The problem of propagation of an electromagnetic wave in a
*
random continuous medis has been studied extensively by many workers;
however, in almost all cases, attention has be=- limited to a random

medium with space-varying statistical properties. In these studies,

*&
" solution has been assumed. This

a go-called "quasimonochromatic
quasimonochromatic assumption essentially neglects the time-varying
properties of the medium. In many cases, this assumption may very
well be correct, for example, in the case of the propagation of light
through frosted glass. In cases when one deals with wave propagation

through hot or very energetic media such as the stmospheres of stars

or plasmas, the quasimonochromatic assumption is clearly incorrect.

In other cases, such as in the study of synchronizstion of spatially
separated frequency standards, doppier broadening of radar signals
or interaction of two signals in a nonlinear medium, the small fre-
quency shifts caused by the randomly time-varying medium may be the
important questions under study. In all cases, the validity of the

quasimonochromaticity assumption should be verified.

See the references in section 1.3.

i
One assumes that the solution of the wave equation is essentially a

sinusoid at a single frequency, if the source is a sinusoid at a
single frequeuncy.
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It is assumed that the dielectric permittivity e(t,P,w) is a
random function of time t and position P. It is further assumed that
it can be separated into a constant term €, plue a randomly space-
and time-varying term. The wave zquation (4.1) for the electric fi~ld
E can be derived from the pair of Maxwell's equations that connect the

*
electric and magnetic fields
.2 o aE al
VxVxE+75 (ueE) = -y - , 4.1)

where J 18 the current density.

In the qusésimonochr~matic assumption, it is assumed that

2 _ 2
‘:‘2' u, €E = p e ?7 E , (4.22)
t t

and that the equation (4.1) can be written, in the current free

region,
-— 2 -—
Ux9Yx Eo L eEo -0 , (46.2b)

where E = E eist.
0
These assumptions are avoided iu this dissertation. Instead, it

is assumed that the spacial gradient of the dielectric permittivity

over the distance of one wavelength is small:

*
An overbar - denot.:s vectors.
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[7e] Me << 1 . 4.3)

Then, (4.1) becomes the following wave equation

2 -—
B L ga., A
7 E UL (4.4)

To keep the basic problem uncluttered of nonessential mathematical
complexity, we restrict the analysis to the solution of the following

scalar wave equation:

- 2 1 - - -
ng(t,r,w) - a—i ( CZ + aq(t,r,w))y(t,r,w) = x(t,r,w) 4.5)
At

teT, ;eka and well on the probabilicy space (2,%,P). a(t,;,w) in

4 stochastic coefficient; that is, a8 random function of both time

and space. x(t,;,w) is the stocnastic source term. The source

term could be a deterministic function but, for greater generality,

it ie asgumed to be stochastic. It 1s assumed that the source term
x(t,;,w) and the coefficient a(t,;,w) are statistically independent,
For simplicity, it is assumed that a(c,;,w) 1s a real stochastic process.
In order te be able to ure some of the results from the theory of wide-
sense stationary stochastic processes, it is assumed that both
a(t,;,w) and x(t,;,w) are wide-sense stationary or reducible to
wide-sense stationary stochastic procesuea.* This assumption

B ————

*
Discussed in section 2.4.
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simplifies the development in that the spectral representations of
a(t,;,w) and x(t.;,w) have some useful properties. Wide-sense
stationarity orly in time t is required. It is nat required that
o(t,;,w) and x(t,;,w) are wide-sense stationary in their spacial
ve-iable r. The statistical properties of a(t,;,w) and x(t,;,w) may
change in an arbitrary manner in the spacial varisble as long as
a(t,;,w) and x(t,:,w) remain second-order processes and (4.3) remains
satizfied. By placing no overly restrictive conditions on the spacial
statistics o1 the medium, physical reality is maintained. The
statistical properties of the medium may vary in space in a manner

that accommodates the usual physical problems. The randonness of the
medium may be restricted to be in a given volume, shown by Figure 4..,
or the mean aquare amplitude of the fluctuation of a(t,;,w) may vary
with height as it is common in the tropospheric communication problems.
The reducibility to wide-sense stationarity also alliows us to consider
physically reasonable problems. The sample functions of a(t,;,w) and
x(t,;,w) fluctuate rapidly in time, but their averaged properties vary
slowly witih time. It is rapid time fluctuation of the sample function
Q(t,;,w) which makes the quasimonochromatic assumption dubious. The
ccncept of reducibility to stationarity permits slow variation of the
statistical properties of a(t.;,w) and x(t,;,w). These slow variations
of the statist‘cal properties must be sufficiently slow so that they do
oot mask the spectral spreading which 18 caused by the rapid time
voriation of the sample function a(t,;,w). This condition is satisfied

tf the power spectrum of the function which modulates the statistical

properties of g(t,;,m) and x(t,;,w) contains only frequencies which




r s BRI 3 NS REI —

O

()

114

are very much lower than the significant frequencies of these
stochastic processes. In future work, it would bo desirable to
remove even the wide-sense stationarity assumption,

The use of a scalar wave equation also limits the _encraiit of
the analysis. It neglects the change in polarizatior due 2 @ rancom
medium, and it is strictly applicable only to the forward s:.-tering
of electromagnetic waves. Of course, in case of sound propagacion,
there is no loss of generality when a scalar wave equation 1is used.

The statistical meusures _f interest in this chapter are the
power spectral density an' c: .erence functions of the scalar wave
function y(t,;,w). The exp. .se'ons for the spectral density wili
reveal the spectral spreading caused by a randomly *1ame-varying
medium. Coherence functions have been found useful in statistical
optice (Born and Wolf, 1964; Beran and Parrent, 1964; O'Neili, 1963;
and Mandel and Wolf, 1965) and more recently in general eiectromagne:ic
theory (Special Issue on Partial Coherence, 1967). To so’'.e our prob-
lem, the differential equation (4.5) is converted intu & differential
equation for the spectral representations of y(t.;,w), then the
methods of Chapter III are applied. Both the Neumann serie. expansion

and degenerate kernel ap;yroximations are investigated.

4.2 Spectral Represent~tion of the Scalii Wave Equation

In principle, it {s possible to apply tiie Neumann series solution
of section 3.2 directly to the scalar wave equation (4.5) but, after
the first few i{terations, the time-domain expressions become unmanage-
able and difficult to interpret. Furthermore, the interesting staiie-

tical measure in this case is the power spectrum of the scalar wave




115

function. Other second-order statistical measures such as variance
and mutual coherence functions can be obtained by taking the inverse
Fourier transform of the power spectrum. Because there is a simple
relation between spectral representation of a random variable and the
power spectrum (Chapter II), equation (4.5) is solved for the spectral
representation of y(t,;,w). The spectral representation is aleo called
the "integral canonical expansion' of the random functions (Pugachev,
1965).

If the random coefficient a(t,;,w) and the forcing function
x(t,;,w) are wide-sense statlonary stocnastic processes with zero mean,

their integral expansions are:

-
a(t,;,w) = /ﬁ A(u,;,w)eiuc du (4.6a)
and
x(t,,w) = | X(z,7,we %t dz {4.6b)

where u and z are real variables. The 1integrals of (4.6) should be

writteon as Stieljes ivtegrals

o

!

(Y(Lor,w) - 1']

A

eiu{ d A (u,w) (4.7a)
o

-
and

x(t,;.M) = ! tizc L Xg(z,M) , (4.7b)




R Rt e -

(j) because d Ao(u,w) and d Xo(z,w) are stochastic processes with
orthogonal increments, and the functions Ao(u,w) and Xo(z,w) need
not be differentiable. For simplicity, the integral expansions
(4.6) are used with the urderstanding that A(u,;,w) and X(z,;.w)

| may be generalized functions. The assumption that x{u,;,w) and

a(t,;,w) have zero mean constitutes no loss of generality, tecause

the mean value of a(t,;,w) can be included with the deterministic

part of the coefficient and the non-zero mean value Gf the source
term x(t,r.w) can be easily taken care of by superposition. The

wide-sense stationarity assumption constitutes a more serious loss

of generality but, without this assumntion, the solution of (4.5)
becomes very difficule. In future work, it would be desirsblie to
remove this assumption Actually, the statiouarity assumption can

be slightly relaxed by assuming that n(t,;,u) are processed reducible

to atatiopary. This will be discussed shortly.

Substituting (4.ba) and {4.6h) into (4.5), theo multiplying both

. -is .
sides of the equation by e * and integrating, equatica (4.5) becomes:

[} o .
f -ist 2 - 1 { -ist 3‘ .
I dt e ©y(t,e,@)) - —5 . droe 7oyt r,w)
‘ o - et
-00 - ™
= a 0
R r S ist ¢3: & iut - -
' dt e ‘E du e Alu,r,w) v(t,r,w) -
3t -
- -0
- o
i ist f = 12t
" T dz X(z,r,w) e .
J "

cw cw {4.8)
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ey

where s, u and z are real variables. Interchanging the order of

A 2 . - ,
integration and ¥ operation, the first term in (4.8) becomes

2 -
277 Y(s,r,w). Integrating by parts, the second term

2 -—
becomes 2x 52/c Y(s,r,w), and the third term becomes

a0 o
2 7 - : = -i{s-u)t
s ¢ du Au,r,w) - dt y(t,r,w) e ( )
- -
or
€0
a 2 - . -
2n s © du A{u,r,w) Y(s-u,r,w)
-}
To obtain these results, the tollowing quantities
~ist  _3 -
€ - oy (t,r,w)
RIS ( ’
-ist -
e v(t,r,w)
©
-ist 3 ' - . jut
¢ = du A{u,r,w) v(t,r,w) o»r
3o , :
-
and
.
Ry R4 o - LT iut
¢ du Afu,r,w) vit,:, ) o
.

must vanish as t aprrudaches + e

in (4.8)

—~
o~
\D
4]
A

{4.9b)

(4.10a)

{6.10b)

(b.100)

(4. 164)

et S -




il

1f x(t,;,m) is a4 wide-sense stationavy stochastic process, the

1 terms of {4.103) do not varish as t = + o, because wide-gense
statisnarity of x(t,;,w) implies that the forcing function is active
from time -» to 4w, This 1s physically unreasonable. To remove this
¢ fficulty, it can be assumed that x(t,?,w) is @ process ihat is

"reducible to a stationary process'. A siochastic process is said

to be reducible to a stationary process if it can be expressed iIn

- * 4 I3
terms of stationary stochastic processes, An example of & stochastic
process which is reducible to a stationary process is asny proceess of

the form

x(t,w) = g(t) z(t,w) + f(r) , (6.11)

where z2(t,w) is a stationary stochsetic process, and e(t) and f(r)
are res&l nonrendom functions of time. 1n particular, we msy take
f(t) to be zero and g{t) can be seiected so thai the terms of {4.10)

vanish as ¢ —+ + ©, For example, if taken to be

-kt2
g(t) = e , (4.12)

where k 18 some small pcsitive number, then x(t,;,w) is a process
K reducible to & stationaxy process and terms cf (4.10) vanish as
t ++ o, (This device is frequently used in the theory of diztributions.)

The source term becomes

*
Discussed in section 2.4.




di ¢ X(z,vr,w} ¢ dz
o Jo
o0 s 3
/ ! i(z-s)t
= ; ! E{z,r,w) e ( ) dz
s -
o«
= 7n | X(s,r,w) &(z-s) dz
-
= 2n X{(s,r,w) . (4.13}

Collecting the results, the spectral representation of the differential

equation (4.5} becomes

[ ]
~

V2 Y(s,;,w) + sz/c2 Y(s,;,w) - X(s,;,w) -52 / du A(u,;,w) Y(#'u,;,w)
J

-0

(4.14)

The left-hand side of the equation (4.14) 1s simply the Helmholtz
equation f[ur the spectral representation of the scalar wave function
Y(s,;,w). solutions of the Helmholtz equation are known for s number
of different boundary conditions; therefore, for these conditions
(4.14) can be expressed as an integral equation:

w0

sij(s-u,;',w) A(u,-r-',w) du »

-0

Y(s,r,w) = F(s,r,w) -L "

(4.13)
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where L ° is the inverse onerator for the Helmholtz equation tor the

. - L N T T
appropriate bourndary conditions. F{s,1,w) denotes L X(s,r’,w);
that is, F(s,r,w) is simply the solution of the deterministic Helmholtz
equation. The iterative solution is simplified if a change of variable
is made 1in the last integral and the integral equaticn (4.15) is written

as:

Y(s,r,w) = F(s,r,w) - L " &° | ¥(u,r',0) A(s-u,r',w) du

(4.16)

Now, the scalar wave equation (4.5) has been converted into a Fredholm
integral equation for the spectral representation of the scalar wave
function. To solve these integral equations, either the Neumann

series expansion or the degenerate kernel approximation can be used.
For the sake of being more specific and for simplification, attention
is restricted to the wave propagation in a spherical coordinate system.

The degenerate kernal approximation is considered first.

4.3 pPegenerate Kernel Approximation

The integral equation (4.16) becomes an Integral equation with a
degenerate kernmel if the following usual approx:mations for large

R are used:
[t - t'] =R -R' cos ' + 0 (*;—) (6.17a)

1 1 1

-7 R 2 (4.17b)




with "l se anproximations, (4.16) " ocomes:

Y{(s,k,w) = F(s,R,w)

2 .
(s exp [-i f (R ~ R" cos ,')]

+ oY (u,R',w) A{s-u,R’,w) du dv
y 41 W

(4.18)

The geometry of the problem is shown 1n Figure 4.1. V denotes volume
integration over the volume occupied by the random medium. This is an
integral equation with a degencrate kerrel and it can be solved by
assuming a solution of the following form:
., 8
p exp (-1 7 R]

Y(s,R,w) = F{(s,R,w) + B(w) s . (4.19)
4 R

Substitutirg (4.19) into (4.18) and solving for B(w), we uave:

/ f exp[i f R' cos v'] F(u,R'",w) A(e~u,R',w) du dv
o

. s

B(w) =
/w . HZ exp [ l%— (s cos §' -u)] A(s-u,R’',w) du dv
1 - J—
[
V -

4 R'

(4.20)

Sutstituting (4.20) into (4.19), tne solution of the degenerate

integral equation (4.18) becomes:
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Figure 4.1 - Geometry for the Degenerate Kernel Approximation




expl-1 f (R - K' cos ')} ¢(u,&",w) A(s-u,R',w) du dv

23]

u iR N
— exp{—g—(s cos ¥' ~u)j A(s-u,R',w) du dv

(%.21)

As in section 3.3, the resolvent kernel of the depenerate integral

equation (4.18) can be defired ftrom (4.21):

I'(s,u,R,R",0) =

2 expl-i i,(R - R' cos y')] A{s~u,R',w) du dv
%

8
4n R -

/ u
1 -_/ ,/ 4n R'
v -

exp[lg-(s cos y' ~u)] A(e- ,R',w) du dv

(4.22)
Ingpection of (4.21) and (4.22) reveals the same difficulties that

were discussed in section 3.3. Namely, the deromirator of the

resolvent kernel may vanish becausr A(s-u,R',w) is a stochastic process.

If the derominator vanishes, the resolvent kernel does not exist.
However, it can be shown that this 1s an event of zero probability if
the probability density function of 7,

Yy = /. ‘ uz—— [iﬁl( 0 ' o-u)] A(s- R',w) du d
i R explT (s cos ¥' -u s-u, . u dv

J
V -e
(6.23)

|
E
b
k




existg and 18 conlinucus in §ome el arhood of 7 = + 1 To Compuie
the gtatistical measures of Y{s, K,w), the denominator of the resulvent
kernel must be expsnded in a power series of 7. The power series
expension is valid with probability ene 1f 'y| < 1 with probability
one. ‘ute that (4.23) does not have a siugularity st R' = 0, because
the volume element dv contains a R' squared term,.

The power series expansion for (4.21) is:

Y(S,R,h}) = F(s,R,w)

¢ [0 .
H .y 2 - ] ' - ' 3 .
+ or R J j exp[-1 - (R R' cos %')] F(u,R",w) du dv
\Y -
. 2 n
C+r+ 7y oy, (4.24)

where 7 is given by (4.23). It can be seen from (4.24) that the
ensemble average of Y(s,R,w) is zero if the ensemble average ot
F(s,R,w) is zero. This follows from the assumption that X(t,;,w)
and a(t.;,w) are statistically independent, zero mean stochastic
processes. The statistical measures that are of greater ioterest
are the power spectrai Jensity and the coherence functions. These
quantities are Fourier transform pairs of one anotner. The power
spectrum Oxx(s) is related to the spectral representation of the

*
random variable by

<d X (nl) d X' (92) > = b(s. - 8

Y
1 2) xx(sl) d s, d s

1 2

(6.25)

*
Discussed in greater detail i{n Chapter II, sections 2.6 and 2.7.
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Because we ore ev-ntually inrerecsted in computicg the crherence
b N

between two spatially separated points {(Figure &4.3), we calculate i
.
<Y (51, Rl' w) Y (52, R,, w) ». Using ‘ust the first tera in th :
power setvies expansion (4.24), we have:
* *
<Y LR, )Y (s, R, W) > F e, Ry,en Foo{s,, Ko, w) o+
1 1 ’ e 1 i L Py
72 - ’
8 3 s s
. 1 . ., " vy
S exp - frl-ﬂ' ve L, ) o+t (K -RTeos,")
) A= -
(br)* R K V oV -e -x /
#
. * ' 1 ¥ 1 it ‘ ] i1 '
F(u,R',w) F (u' R, W)« A(s,-u,R",w) Als_ -u' K', ) du du' dv dv .
i i
4
- ‘v 4 A R .F/ - +
Ppp (e R Ry) Tlep - ey) *
w o 5
o H{s s, R K, R'LR™ & (u,R' K™Y t{u-n')
12 _ 1720 FF i
VoV -e e i v
H 1
; -
N »
~ Als, u,R',w) A (sz-u',R”,M} ©du du' dv odv! - 3
L] .
» E
3} 5
- ¢ R LR ¢ -8 ; 3
Spp s ROR) Bley - sy) e - .
- i :
! 52 ‘2 H(s, &, ,R,, R, ,R'" ,R") & .(u,R',R")
H : 2 ) . l. 21 “, 20 L] FF * 3 €
vV V -w
¢ {s,-o,KR',R") du dv av'] t(s - &) , (4.26a) {
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“} where
B(s;,89:R) Ry R1,RY) =
1 1 \ , %2 "
exp[-t{ — (R,-R' cos v'} + £ == (R,-R" cos "))
2 c i c 2
i (4x) R1R2
:f (4.26b)
The cross zerms of the form
2
8
<F(s),R,0) 4R,
5 , * * .
. L/ /N exp[ + 1 < (R~ R'"cos y')] F (u,R',w) A (sz-u,a',w) > du dv
E v -\-Juo
!
| {(46.27)

vanish because the average < A*(sz-u,R',w)> vanishes.

From (4.26), we note that using just the first term of the expansion,
< Y(sl,Rl,w) Y*(sz,Rz,m) > is equal to a delta function times the

sum of tw¢ terms. The coefficients of the delta function 6(51-32)
are interpreted as the power spectral density of the solution of the
scalar wave equation. The facc that we get a delta function 6(51-32)
shows that, at least ae far as the first approximation is concerned,
the solution cf the scalar wave equation is a wide-sense stationary

*
process. (For greater generality, the correlation between two spatially

*
Digcussed in section 2.
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separated wave functions was computad. Of course, we have a special

Case when Rl equals R..) Thus; the simplest approxiration of the

[ 28]

power spectra. density of the wave function is, from {4.26¢),

* (s,R,,RK,)) = &__(s,R ,R, ) +
Yy 172

+ s © . H{(s,s,R.,R ,R',R™ ¢ (s-u,R',R") ¢__(u,R',R") du dv dv'.
2 a FF

I,

(4.28)

This crude approximation has already some interesting features. The
first term is the power spectral density of the wave in the deter-
ministic time-invariant medium. The second term demonstrates the
spreading of the power spectral density of the wave function by the
randomly time-varying medium. Even if oan(s,R',R") is a lcwpass
function and its power spectrum does not overlap the power spectrum

of QFF(U'R"R")’ the peower spectrum of ov"(s,R RZ) is modified by

1’
the randomly time-varying medium. This is illustrated on Figure 4.4.
Thus, rhe widely used quasimonochromaticity assumption is incorrect,
or at least should be seriously guestioned. Equation (4.28) is an
approximate expression for the stochastic Green's function. It is an
integral expression that relates the power spectral density of the
solution to the specrral density of the source term and stochastic
medium.

The prext approximation can be ccmputed by including the 7 term

in the power series expansion (4.24).

WA S »

1 v,
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QFF('J) @QQ(U) ¢FF(U)
-y ﬂ‘ / \ Jf\ b
3
Syy(s) Dyyls)
-5 ‘§
Figure 4.4 - Spreading of Power Spectrum by Randomly Time-

Varying Medium
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The cress terms give:

2 ®
* 8. F 8
. 1 1
<F (sz,Rz,w) “"Rx { f J/ exp [-1 e (Rl-R' cos y')] F(u,R',w) ;
V ~®

A(Sl*u,R',w) du dv ] 7 (sl) > =

2 o o«
8 2 8
—i f f Fr u’ 1 ' Y iR" :
‘H!Rl J J/ v/’ lﬂ(R" exp[-i ¢ (R1°R CO8 vy )+ "c_(slcos"l_ui)]

V V ~« -~
< F’ R' W * ] 1) 1] L} [}
{u,R',w) F (sz,Rz,w)> < A(al=u,R ,W) A(sl-u JR,WY> du du' dv dv

” / Pror g s, -
) / J I‘KR" exp [_ —:- (RI’R‘COS \L')-ff_c‘" (slco’wﬂ_ul)]

A

-0

¢FF(U.R',R2) 5(u-82) Om(sl-u,k’,‘a") B(ut®) dv av' c¢u du’ i

t-N

181 iR"
Jf JF exp[~“—"(Rl-R'cou b))+ (e, cosl" + 8,)) z
(Ln) R RY < ¢ 1 2 ‘
vV Vv

oFF(s R',R ) 0 (s +92, 'LR™) dv dv'
(4.29)
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and
2 o
s . 5
2 ror 2 *
< i £ - R'cosy')? F (u R .w
(F(sl,Rl,w) A“Rz \/ \/ exp |1 p (R2 R'cosy')? F (u,®',w)
v e
* *
A (8,-u,R",w) du dv) 7 (s,) > =
2 L) 2
8, /_‘ ﬂ/\ ? 8 1]
£ L R 2 n? ey AR? ey,
4XR2 h/ v/ y Jf ZaR" ©XP {1 - (R2 R cos ¢°) . (52cosa u'l]
V V -=

* * *
< F(sl,Rl,w) F (u,R",w)> < A (s,-u,R',w) A (32-u’,R",w) > du du’ dv dv’

2 m
s ‘ ,2 8 0
- —2 [ _w'® P o
lmRz J 4R exp 1 c (R2 Ricogy') - (szcogw u )]
vV v

R! - ,l|||c3‘| ' s
OFF(u,Rl,R ) 5(u sl) Oi:u(s2 u'LR',R"Y S(u + w') du du' dv dv

N is "
= l2 ‘2 u/\\/ —L exp [ —2 (R,-R'-08y*) - ARZ (s,cosy™ + 5 )]
172 2 " < 2 c 2 1
vV (4x) RZR

1 9 11} [}
on(sl.RI.R ) ¢>m(;s1 + 6,, R",R") dv dv

(4.30)
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hese two terms exhibit the nonstationary behavior of the soiution,

because of tie absence of delta functions 5(81‘8 However, these

2)'
terms vauish i{f the power spectra %]1(51+82) and QFF(SL) do not overlap
as happens ir some cases of practical interest. 1f{ this is true for
all s, ang Bas then (4.29) and (4.30) vanish and the wave function
still remains wide senre stationary. Note that even in the case of

the nonoverlapping power spectra, the time-varying random medium still

spreads the power spectrum of the wave function as shown by (4.28).

The next term that contains a delta function t(sl°82) is:
[+
2 2 l[’\ ’[ /:.\ [‘ ;' ] 113 ) * [} "
81 52 ,‘ J/ V, u/ H(sliszileRle DR ) < F(U)R ,w) F (U ’R ,UJ) >
vV ¥ -0

o *
< A(sl—u,R<,w) A (gzvu',R",w) 7(81) 4 (sz) > du du' dv dv'

(4.31)

To evaluate this term, we need to know the fourth moment of A(u,R,w)

or make an additiongl assumption that «(t,R,w) Is Gaussian. If
a(t,R,w) is Gaussisn, then A(v, R,w) and Y are also Gaussian processes.
This, howr er, vioiates the condition for validity of tiie power svries
expangion of the denominator of (4.21). For the power series (4.24)

to converge almost e2verywhere in probability, ]7] <1l a.e.p. This
conditfon is not satisfied when y is a Gaussian process, and the

power series does not¢ converge. This also follows from the actual

B m—

%
Discussed in section 2.8 sud also in Moyal (1949).

e o
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computation of the higher order terms in the power series expansion.
For example, (4.31) produces a sum of three averages or, in general

¥
computation of the average of 2n A(u, ..,w)'s, gives a sum of ‘%El*
2 n!

terme. Because of thig large number of terms except for the trivial
cage of zerc variance, the power series expansion diverges when y is a
Gausgian random procegs. In such a case, the power series expansion
18 not useful and other methods for computing the statistical measures
of /4.21) must be found.

Since (4.22) is a nonlinear function of A(s-u,R',w), the various
techniques for calculation of statistical measures at the output of
nonlinear devices can be used to calculate the statistical measures
€ (4.22) (Middleton, 1960; and Deutsch, 1962). The nonlinear trans-
formation of random processes is a specialized topic in itself, and
it 18 not discussed eny further here.

Simplifying (4.31) and retaining only e coefficient of
b(al"az), the next approximation to the stationary part of the power

*
spectral density oyy("Rl’RZ) becomes, for the Gaussian coefficient

0 (LRLR) = 0, (8, LR) +

w0

4 X PR _ . o - .

+ @ /f[ H(O'B'RI.RZ'R gR ) om(s U,R ,R ) OFF(U.R ’R ) du dv dv
VYV -

*
As stated before, the power series expansion (4.24) does not converge
ior the Gaussian coefficient. This step is for illustration purposes
only.
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-]
(1 + u/\u/ /P H](e,u,R',R") gmy(s-u,R',R") du dv dv' . . .),
V V-
(4.32a)
vwhere H(s,s,Rl,RZ,R',R") is defined by (£.20b) and
Hl(s,u,R',R") "
u ﬁ ] N . a " "n _12 ] 1]
7 exp [ < (R' ¢cos 3' - R" cos y") - . (R' - RM))
(4n) " K'R’
(46.32b)

Thus, beside the stationary term, two nonstatiopary terms are
obtained, even when the random coefficient (t,R,w) is a Gaussian
process. If o(t,R,w) is not a Gavssian process, as mentioned before,
«nowlodge of its fourth mo: “nt is required for the detailed evaiuation
of (4.31). 1If more terms are included in the powrer series expansion,
knowledge of still higher order statistics of g(t,R,w) is required.
Even {f the power series {4.24) converges almost everywhere, this
does not imply the existence of < Y(sl,Rl,w) Y*(s2’R2’w) > because

w
Y(al'Rl'w) and Y (s w) may not be second-order random processes;

R
272
that is, < lY(sl,Rl,w)[2> and < ,Y(BZ'R2'w)|2> may not be finice,

(It is perfectly ressonable for the power spectral density to have

! singularities provided they are integrable.) In such case, one may

! calculate the integrated power spectrum, denoted by S'(l',s”,Rl,Rz)




136

by integrating oyy(s,Rl,Rz) over the frequency band from s' to s":
1"

8

/
S(s',s",Rl,Rz) - L/ ny(s,Rl,Rz) ds . (4.33)

B'

The above integral 1s only applicable for wide-sense stationary
stochastic processes. If one takes into account the nonstationary
part of the solution, the power spectral density is a function of two
frequencies as discussed in section 2.7. Hence, the integrated power

grectrem mus>- -~ written as a double integral:

' *
L} ] " "t " - -
S'(s',s",s’",s"", Rl’RZ) J < Y(sl,Rl,w) Y (52,R2,w) > dsl ds2

(4.34)

The integrated power spectrum s actually a vetter representation of
the physically measured energy, because all instruwnents have nonzero
bandwidth.

Other statistical measures of {nterest are the mutual coherence
function and normalized mutual -oherence ftunction (Born and Wolf, 1964,
Beran and Parrent, 1964, O'Nefll, 1963, and Mandel and Wolf, 1965).

We denote these by ny(R ,T) for the wide-

.Kz,T) and by ny(RI'R

1 2
sense stationary processes, and by ny(RI'KE’Ll'cZ) and ¢ y(R"RE'Cl'[?)
for the nonstationar, processes where, in the first case, v = t2 - tl.

The symbols " and y are used in the iiterature for the coherence
function and the normalized cohererce function, but ' has alveady been

used to designate the resolvent kernel of the integral equatior. 7 has
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also veen frequently used. For the wide-sense stationary process,

the mutual coherence function ny(Rl'RZ'T) is simply the Fourlier

transform of & (s,R, ,R,):
vy 1’2 d

a0
C RLR.T) = | o (s,R.R.) e ds (%.35)
y_y 1) 2) j yy ’ 1! 2 » H

and the normalized mutual coherence function cyy(Rl,RZ,T) is

c Y(R,.Rz,T)
e (R, Kyu e YY = -

| (€, (R),R).0) C (R, 1R, ,0)]
r S
Do (s,RLR) T s
J yy 172
° ® ’5
oyy(S.Rl,Rl) ds ] @),y(s.Rz.Rz) ds i
-0 -0
| (4.36)
< is also known as -he complex degree of coherence. It is & useful

yy

concept in interpicting Interference patterns of partially coherent
light (Beran and Farrent, 1964). The concept i# also useful in
optical and radio astronomy. Mandel and Wolf (1965) show that,

on one hand ny(R tv) is a8 measure of the correlation of the 1

l'KZ,

comnplex field at two points R1 and RZ' and, on the other hand, it {s

8 measure of the aharpness and location ot the fringe maxima obtsined
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f‘) by superposing the beams propagated from tiese points. va(Rl’RZ’T)

and cyy(Rl,Rz,f) here are grsemble coherence functions because they
are obtained by ensemble averaging, rather than time averaging. Both
engemble and time averaged coherence functions are used (Mandel and

Wolf, 1965). From Schwarz's inequalit , we have:
q y

' [C._(R,,R,,7)]
0 < e (k,Ry,1) < e <

: :
e, ®RLRLOTT (€ (R, R, ,0)

(4.37)

These extremes characterize complete incoherence and coherence,
respectively. The quantities ny(Rl,Rl,t) and ny(RZ’RZ'T) are self

coherence functions at R, aud R,, C (R »R,,0) and ¢ (R
1 2* Syt yy 2

the ordinary iight i{ntensity (in optics) at R, and R_.
1 2

'RZ'O) are

When the wave function s not wide-sense stationary, the coherence

functions must be defined in terms of the bifrequency Fourier transforms;

that is,
ny(Rl'R2'tl’t2)

-is, b, + {8t
W) > e 1l <2 de . ds

&
(Y('lan»“") ¢ (!Z,Rzo 1 7

(4.38a)

*
Discussed in section 2.7.

*
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ny(Rl,Rl.tl,tl)

= | /< . > 4
J Y(sl.Rl,w) Y (BZ’Rl’w) e dsl 8,
-m
(4.38b)
and
C
© is . t, + is,t
* Tty TSN
= / ‘; << Y(SL'R2 w) Y (sz,Rz,w) > e dsl d52
-
(6.38b)
and
C
yv(RZ'RZ't2't2)
" N -151[2 + lsztl
- N Y(slﬁRq,w) Y (sq.R?,u) > e dsl ds,
(4. 38c)

The normalized mutual coherence ‘unction ¢ (Rl'Rl’(

,t,) can be
Yy <

!

de.ined tor a wave function that is not wide-sense s.ationary bv:




J
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C (R R )

vy Y b

ny(Ri,Rz,tl'Lz) = P %

- !(‘ . i [, i X i
i ”nyRL’Rl’tl’tl)‘ 1Lyy(R2,R2,L2,t2);}

VRS AR

[T

(4.39)

The normalized mutual ccherence function as defived by (4.39) is a

generaiization of the wide-seu. » statijonary concepts to the case

when the wave funciion 18 not wide-sense stutiocnary. The Fouriex R

transforma {4.35) and (4.38) exprecs the wmutual coherence functione

for the wide-sense staticnary and for the nonstationary processes.

*
If satisfactory approximations {or the < Y(sl'Rl’w) ¥ (az.Rz,w) >

have been obtained, then, at ieast in priwciple, it is 8 simple
matier to compute the mutual coherence functions from (4.35) or
{(¢.38). To cerry out the detsiled computation of these Fourier
1. transforms, knowledge of the statistics of the source and stochastic
i medium 1s needed. In particular, for the source, we need the power

apectral density o_.{(u), and for the stochastic coefiicient, we need

FF

its power spectral density and higher order spectral moments. We
have !slicated a methed by which the mutual coherence functions may
be calculated for a scalar wave propagating iu a randomly time- and
space-varying medivn. A~cording to Bersn and Parrent (1964), this

has been an ungoived problem.
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in the next section, the Neumann series expansion of the integral

equaticn (4.16) is investigated.

4L 4 Reumann Series Expansion

To obtain a Neumann series solution for the integral esquation

(4.16), a solution of the following form is assumed:

¥(s,7,0) = A% Y (s,T,) + AL Y, (e,T,0)

A" Yn(sp;,w) C ) (4.40)

Substituting the assumed solution (4.40) into the integral equation

=n

Y(s,;,w) = F(s,;,w) + A L-l 52 f- Y(u,;',w) A(s-u,;',w) du
v
-0

(4.41)

and equating the coefficients of the same powers of A, the following

iterative solution is obtained:

¥ (s,r,w) = Fls,r,0) (6.42a)
Y. (s T W) = L-1 52 / Y (u ' w) Af{s-u ;' w) du
1 » 0y J o » v A Ay ’
-1 2 I -, -,
- L "8 \/ F(u,r',w) A(s~u,r',w) du , (4.42b)

-y

———rnem st <
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and

@O
Yz(s,;,w) - L“l s f Yi(u,;',w) A(s-u,;’,w) du
:ao
o [
-1 2 [ -1 2 r . - -
= L "5 { L7 u du ;| Flu',r",w) A(u~u',r',w) du'.
—uw ~)ﬁw
(4.422)
The general term is
-]
- -1 2 [ ) T
Y (s,r,w) = L " g [y {u,r',v) A(g~u,r',w) du ,
n j n-1
-6
(4.424)

where L’1 is the inverse operator for the Helmholtz equation and its
boundery conditions. In the spherical coordinate system, the inverse

operator for an outgoing wave is:

-]

"y

- exp [ -1

- \/ dv
]
v an

|0 e
—~~
e
-

- 4.43
_r.! ( )
where v i the volume element in the spherical coordinate system,
and \jfindicates volume integration over the space containing the

rnndogly space- and time-varying medium. For simplicity, denote
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G(s,r,2') = - T ) (4.44)

i v A ety

Recalling from {(4.16) that A = -1, the Neumann series iteration becumes:

Y(5,7.0) = F(s,r,9) +

«©
S -
+ M s [ Gis,r,z') Alp-u,r',w) F(u,r ,w) dv du
Jooo
V ~m
[ <)
A r vr .[ Z _— hiond -
PP / i | we(s,r,r 60, ")
JoJd o d
V V -=

A(s-u,;') A(u-;",;") F(u',;",w)) dv dv' du du'’

(4.45)

This series has some interesting physical interpretations. The first

o

term after F(s.;,w) can be interpreted as the first-order scattering
of the wave by the random medium. It is the widely used Born approxima- i

tion. A number of papers and books consider only the Born approximation. 1
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The Born appusoximation gives a satisfactory answer if only single-
scattering is important. The higher order terms are the multiple-
scattering corrections arnd must be taken inte account in long distance
wave prupagation through the random medium.

The single-scattering approximation is investigated first. After
that, the multiple scattering and the convergence of the Neumarn series
expansion 18 investigated. The statistical measures of interest are
the power spectral depsity and the mutual coherence functions. The

single scattering approximation gives:

- * - - * -
< Y(si.rl.w) Y (szprz.w)> =~ < F(sl,rl.w) F ("2"'2'“’))

2 2 ,[ " ,_ll >
+ A's 152 \/u[J J’ G(al,rl,r )G (sz,rz,r ) < F(u, T ,w) Flu',r",w)
v -

- * -
< A(sl°u,r',w) A (s?-'u',r",w) > du du' dv dv'

QFF(sl,rl,rz) 6(31-3 +

2)
- [ i * = Tw Ty Ta b(u-u')

A 88, j / / J G(sl,r.,r ) G (sz,rz,r ) @FF(u,r ,t") B(u-u
V V =

- e -
< A(sl-u,r',w) A (sz-u',r".w)‘) du du' dv dv'
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gL

dpplapary) Bleyms,)

PPN

G(s .;

) 6 (s, .r,,1")
1y 2* T2

<
<t

- v T ] -
@(]a(sl u,r',r") ¢FF(u,r ,1")du dv dv ] 6(81 82)

(4.46)
The cross terms have vanished because A(s-u,;,w) is a process with

zero mean. The approximate expression for the power spectral density

is the sum of the coefficients of the delta function 6(81'82); i.e.,

oyy(s'rl'r2) QOFF(S’II'IZ) +

[ ]

4 ~ T T TN ¥ T Tu T BT} oLy '

8 Jf\/ k/' G(a,rl,r )6 (s,r2,r ) qmm(s u,t',r'") OFF(u,r ,r') du dv dv' .
vV V -~=

4.47)

This expression reduces to (4.28) if the approximacions (4.17) are

2'F
R',R') as defined by (4.26b). This

used to simplify the factor G(s,rl,r') G (sl,r "); that is, this

factor becomes then H(s.s.Rl,Rz,
expression again demonstrates the spreading of the power spectral

denaity of the wave function by the randomly time-varying medium.

Equation (4.47) again shows that, as far as the first approximstion




=
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is concerned, tue wave function is a wide-szense stationary process.
An approximation for the normalized mutual coherence function can

be obtained by substituting (4.47) into

‘ - -isT
o J/ Oyy(s.rl,rz) e ds
ny(rl’IZ'T) = =
[ ] © 8
. o r o -
[ ¥/- Oyy(s,rl,rz) ds ,/ oyy(s,rz,rz) ds
—co e

(6.48)

and cariying out the iIndicated integration.

If multiple scattering is important, more t-rms must be included
in the Neumann series expansion. In such instances, we have for the
nth approximation

-— *
< Y(sl.rlfw) Y (s w) > "

2’;2.
o - . - .2 - )
< Yo('l’rl’w) + A Ll(slgrl.w) + Yz(sl.rl.w) +

A" Y (5..5.0) %Y TGt + Ay e T w4
n 1’1 ) 2’2 1 2°°2

2 w - n * -
A Y2 (.2'r2'w) A & Yn (sz,rz.w) ) >

(4.49)
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cartying out the indicated multiplication and averaging we ge' :

N

- * -
Y(slsrl.w) Y (sz.rz,w) >n =

(¢ - - * -— N
A <Y0(Sl,t1,w) IO (SZ'r?_'m) =

2 - * - - . * -
+ N7 ! . J r [ ¢ >
{ < Yo(sl.rl.w) ¥, (sz.rz,w) >+ < Yz(sl. l.wJ io (sz.rz.w) >

.- * - 4 < = * =
+ < VY. (s > ; . e
< Ylﬁsl,rl.W) \l (bz.rz,w) )+ N Yz( l,rl.w) Y2 (sz,rz.w)

+

- * — —_— * —
< Y3(Sl'rl'w) 1, (Sv’rz'w) cte Y‘(Sl,r],w) Y, (So’r?-“) >

— * - —_ _—
+ < ¢ . B R j >
< Yo(sl.rl,v) Y, (55,1, w) 4 Ya(sl.rl.w) Yo(sz,rz.w) )

+ ... Kzn (2n + 1 terms)

(4.50)

The coefficients ot odd powers of N are zero because 1t is assumed
that the odd moments of A{u,r,v). It this agssumption is not made,

the odd terms must be included. The terms « Yo(sl,;l,m)

* a—
Y (s
o

— * — -
> d < . IS ~ N
2,rz,m) an Yl(sl,rl,u) Yl (qz.rz,w) and Yl(sl,rl.w)

* p—
Y1 (sz,rz,u) > were already computed tor the first-order spproximation

(3.47). The kz terms are:
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- * -
<Y°(sl,rl,w) Y, (gz,rz,w) > =
[ ]
* - - * - - * - * -
a§ /\ /\ /\u/huzG (8,,1,,r")G (u,xr',r") <A (s “u,r') A (u-u',r") >
J J J 272 2
v -0

* - -
<F (u',r",w) F(sl,rl,w) > du du' dv dv' =

[ ]
A S I - -k = - * - * -
[ | 1 4G (s.,r )G (u,r',r") < A (s “u,r') A (u-u',r") >
J J J 2’72 2
i

-ac

[ S 2 ]

r
5, |
J

v

T ) [ [
OFF(u 1T ) &(u al) du du’ dv dv

r',r") du dv dv' =

2 i i 2 * —_ - * P
5 - ! ; Vo
(12 '1) . | / uG (uz,rz,rl) G (u,r',c")

- Tw T Th '
Ocn(-2 u,r%,r') QF r',r'") du dv dv

r('l'
(46.51)
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The contribution of thi~ term to the power spectral density 1is

«

) * - - * [ - - _— -
L UZG (s,r.,r')G (u,r',r") ¢ (8-u,r',r'"Yeo_.(s,r",r }du dv dv'
. 2 on FF 1
(46.52)

Similarly, the cortribution tc the power spectral density frowm the term

- *
< Yﬁ(sl’r'w) YO \s,,rz.w) > is:

: ‘
2 2 -

8 S WG, L, )G, ™) @ (seu,et,e") @ (s,r.,c") du dy dv'.
R'¢ FF 2

1
(4.53)

These two terms, (4.52) and (4.53), do vot contribute any energy to
the frequencies which are outside the spectrum of F(s,R,w) because,

in both ot these integrals, the argument of the power spectral density
. - - oo - T ’ . .

term (QFF(s,r",rl) in (&4.52) and @FF(a,rz.r Y in (4.53)) is 8; i.e.,
same argument as the argument ot the dependent variable. For both
cases, the variable of irtegration 1s u. The:etore, at trequencies
where the tactors QFF(s,;",xl) and @FF(s.rz,;”) {n the Integrand
vaniash, the respective integrals vanish and these terms do not
contritute to the spreading ot the pover spectral density. This is

not the case with the last term of (4.47) where the argument of
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oFF(u,r ,r") 18 same as the variable of integration (u). Hence,

this term shows spectral spreading beyond the original band of
frequencies. These two terms, (4.52) and (4.53), are also expressions

tor spectral density of wide-sense stationary processes because they,

too, are cretticients of delta functions t(s!-sz).

The computation of the higher order terms requires, in general,
knowledge of higher crder moments of the random coefticient (t,R,w).
Only 1f g(t,R,w) 1s a Gaussiar process is knowledge of the first two

moments sufficient to specity all higher moments. As s.own in (4.50),

n Lo .
A is multiplied by the sum nf 2n + | averages. 1In the case ot the
(2n)!
Gaussian process, each 3average produces i;*l* terms. For tnis
2 n!

reason, it can be expecte ' that the Mewnarn series expansion diverges
for the Gaussisan processes. Detailed calculution shows that onlv one

{(Zn). )

of the terms produces 1 Jdelta tunction t(s‘—sj
] ' i 'y
L n.

stationary psrt ot the I umann series expansion may converge (it

). Thus, the

addittonal conditions tor couverygence are satistied) even tt the
nonstationary part ot the series diverges.
The series expansion (4.50) converges 1t the mavnitudes ot tne
R . . 2n . L 2n .
coetficients of \ are smaller thar (2n + 1) M, where M ~ 1. It
these conditions are true, then the series expansion (4.50) converges

necsuse {t 18 dominated by

- )

(1 - x) '1+?x+31‘+...(n+l)xp
{4.54)

Theese are sufficient condit tuons tor .onvergence; the series (w.50)

el
may converge v .r less restrictive conditjons. The u tactor {r the
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Inteprand of (4.52) does not cause d4ny ditticulty with the infinice

integration becaure bhoth * (u) . tFF(u) are elther bandlimited
P94

2 i

. _ l
or they behave 1n many cases approximately 48 — or »r least as
) . “

G i

u

‘17 tor large u (Tatarsk:i, lwol).

u

In the actual evaluatiorn ot the volume integrals, simplifying

approxtmations can be made o'though we shall not do any such
calculations. For ex:mple, ir e¢valuatior ot the volume integral in
(3.44), {t can Ye observed thnat the main contrrbution to the integral

comes trom the volume where 1’ r'", that is, t:om the volume where

} t' - r'" j is ot the same order as the correlation length ot the

’
spatial variation ¢! the random med:m. This is clearly so {n the
case ot some 0t the widely used spatial correlatior tunctions ot the . 3
form:
[*
2 e T : '~
b" exp i -} r'" - r :/rO |- (H.55a) ! -
i
i
!
2 - 2 N :
b™ exp [ -{ ' - v"i T, |- {4.55b)
and 3
2 -, - Vv - .
b IR K S § 1 '
v-1 r (. t St (4.55¢)
2 r{v) o : o ‘
where v s the correlation length and K\(x) is toe Regsel tunction ,
) %
of the second kind ot 1aaginary argqunent {Tatarsxi, 149tij). Booker 'i
and Gordon (1950) have used (4.%3a) and, more recently, Kcasilhikov e
8 ‘¥
——— bR
Krasilnikov's work fs discussed by Tatarski (l196l1). a

-



152

has usec (4.55¢). Tatarski (1961) discusses the theoretical
Juseification for assuming these forms for the spatial correlation
functions and comperes the consequences of these assumptions with

the experimentsl results. It has ..iso been pointed out by Comsteck
(1963 and 1964) that the autocorrelation functions of the same form
as (4.55¢) are capable of satisfying the theoretical snd experimental

requiremente for wave propagation problems in a random medium.

4.5 General Remarks and Conclvsions

Both the Neumanrn series expansion and the degenerate kernel
dapproximation demonstrate the spreading of the power spectrum of
source by the time- and space-varying random medium. The quasimono-
chromatic assumption ir the previous work has totally neglected this
spreadinyg of the power spectrum of thz wave function. Even the first-~
order approximation provides a useful method for the computation of
the approximate spreading of the power spectrum of the wave function.
Hizher order approximations show further spreading of the power
spectrum. It thus appears that the successive convolutions of the
power spectral density will spread the power spectral density of the
wave function even further, make its spectrum wider and, therefore,
its correlation tir~ snorter. This agrees with the intuitive concept
that the multiply scattered waves become decorrelated.

In both methods of solution, the first term in the solutior
(zeroth approximation) is the solution of the wave equation in the
nonrandum medium. *hen the next approximation is used, the wave
function is a wide-sense stationary stochastic process if the source

and random medium are wide-sense stationary processes. If tue higher
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order approximations are used, terms zppear which are no longer
wide-sense stationary. For the {irst approximations, the mutual
coherence function was a function of difference of the observation

times; that is, C(Rl‘ 7), where 7 = t. ~t, . But when higher order

2’ i
approximations are used, the mutual coherence function is & function
of the actual observation times Ll and tz. The mutual coherence

function must be written as C(Rl,ko,t ,tz) to express the dependence

1

on tl and t2. Because of the close relationship between the coherence
functions and optical images, one would expect fluctuation of the light
intensity when the light propagates through a randomly time-varying
medium. Both "twinkling' and ''quivering' are common in observation of
stars by telescopes (Tatarski, 1961). Twinkling is the irreguler
fluctuation of the light intensity and quivering is the irregular
fluctuation of the angle of arrival of the light. A large number of
experimental papers have been devoted to the twin!ling and quivering
of stellar images. {(Chapter 13 cf Tatarski (1961) gives a number of
references.) Under unfavorable observational conditions, instead
of a luminous cove and a series of concentric rings, one observes at
the focel plane of a telescope an irregular patch of light which is
dancing around and fluctuating in light intensity. A theoretical
model which would explain this phenomenon could be based on the non-
stationary mutual coherence functions.

Both the degenerate kernel approximation and the Neumann gesles
expansion have the disadvaiutage that they are extremely laborious, but

this is to be expected of a problem which is tundamentally very complex

In spite of this, even the first approximations provide useful results.
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The Neumann series iterations represent multiple scattering of the
incident wave. This interpretation appears to be useful even if the
Neumann sexies expansion does not converge. What is needed is a
method for interpreting the divergent part. W. P. Srown (1967) has
used a selective summation method to interpret a divergent Neumann
series expaneion. The basic idea of the selective summation technique
is to identify the terms in the Neumann series that causes the uiver-
gence, and to sum these terms to obtain a closed-form expression for
the multiple scattering effects.

In the degenerate kernel method, we do have a closed form
expression for the e~ectral representation of the wave function.
However, when we atiempt to compute the power spectral density and
the coherence functions by expanding the denominator of the resclvent
kernel in a power series, we may obtain a divergent power series.

In this case, the power series expansion is not &an essential part

of the solution, it is just a computational method. [f 1t does not
work, other methods, such as the nonlinear random trarsformation methods
(Middleton, 1960; and Deutsch, 1962) must be used. Application of
the nonlinear random transformation techniques is complicated and

it is a major topic in itself. Development of such computational
wethods would be a possible extension of this work. Other extensions

of this work are discussed in the concluding chapter.




CHAPTER V

CONCLUSIONS, APPLICATIONS AND EXTENSIONS

In the diverse areas of electrical engineering, problems arise
which should be properly described by linear differential equations
with stochastic coefficients. In most cases, the randomness of the
coefricier-s has been ignored because no widely applicable methods
have beer known for solving such problems. In this dissertation, an
nth order linear differential equation with such stochastic coefficients
has been considered. It is assumed that the coefficients of the differ-
ential equation are separable into deterministic and stochastic parts.
In the case of ordinary stochastic differential equations, the problem
now becomes a problem of solving a Volterra integral equation with a
stochastic kernel. Two methods of solution are considered:. :he Neumann
series expansion and the degenerate kernel method. The Neumann series
expansion 18 an cxpansion in terms of iterated integrals. A theorem
which gives sufficient conditions for the uniform convergence of the
Neumann series exransion is proved. The proof of this theorem and
the actual Neumann series expansion is facilitated if the nth order
differential equation is expressed as n first-order differential
equations. This formulation has the additional advantage of using
the notation and terminology of the state-space formulation of modern
contre . “ystem theory. (This clarifies the connection between this

work and the control system problems.)
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The uniform convergence of the Neumann series axpansion allows
the solution of the stochastic differential equaticn to be expressed
in terms of the resolvent kernel of the stochsstic integral eguation.
The eneemble average and covarisnce function of the aolution sre
expressed in terms of the corresponding statistical measures of the
resolvent kernel and of the input process. The atatistical messures
of ths resolvent kernel are functions of the Green's function of the
dexerministic operator and appropriate statistical measures of the
stochastic coefficients. Theee results constitute & generalization
of the corresponding expreseions for linear time-varying systeme to
th: linear rapdomly time-varying aystems. The kernels of the integrel
expressiona for the astatiasticel measures of the solution can be inter-
pretad as stochastic Green's functions.

The construction of the resolvent kernel by means of the Neumann
saries expansion ia, however, extremely laborious. For this reaszon,
other methods of solving the integral equation with the stochestic
kernels were investigated. When the deterministic part of the
stochsstic differentisl operatoy 1s time-invariant, the separation
of the stochastic and determiniotic parts of the differential operator
gives a Volterra intrgral equation with a degenerate kernel. In solving
this Volterra integral equation, we still have to resort to Neumann
series expansion. From the &' andpoint of computational difficulty
and convergence of the solution, there is no essential difference
bstveen the straight Neumann series expansion and the degenerate
kernel approsch. Selection of the method depends on the physical
problem and computetionsl convenience., For example, in the case of

a4 time-invariant deterministic part, the transition matrix msy be
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already known and, therefore, the degenerate kernel method may be
convenient. In the case of the time-varying deterministic part,

the straight Neumann series expansion is more convenient than the

degenerate kernel method.

Thus, we have two complementary methods for solving stochastic
Volterra integral equations. The degenerate kernel method is also
important in that many arbitrary nondegenerate kernels can be
approximated by degenerate kernels. Other approximate methods, such
as the method of moments, are equivalent to the replacement of an
arbitrary kermel with a degenerate kernel. Other methods, such as
the Fredholm method and the Hilbert-Schmidt method do not offer any
computational advantages for solving this problem. To use the Hilbert-
Schmidt method with unsymmetrical kernels, one has to solve a pair of
integral equations of the first kind. This problem 1s no less diffi-
cult than solving the integral equations of the second kind. The

Fredholm theory has been very important in the development of the

classical integral equation theory, but to use the Fredholm method
for construction of the resolvent kernel 1is prohibitively difficult
in practice.

Both the Neumann series expansion and the degenerate kernel method
are very laborious. In pr .tical computation, .ne must still resort
to the truncation of the Neumann series expansions. The lterative
procedure makes it possible to improve the approximations, because
the truncation of the series 1s made almost as the last step In the
solution. In other methods, such as in the hierarchy methods or in
methods which use approximate ditterential equations, the approxima-

tions are made at the beginning ot the problem. To improve these
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approximations, one must essentially rework the whole problem. The
method suggested here does not have this disadvantage.

It can be seen from the expressions for the covariance function
of the solution that tine knowledge of all the moments of the stochastic
coefficients is required for the complete solution of the problem. If
only the second-order statistics of the coefficients are known only
an approximate solution of the problem is possible. This approximate
solution can be obtained from the first-order approxiwation of the
Neumann series expansion. An exceptional case is that in which the
stochastic coefficientr are Gaussian processes. Then, the knowledge
of the second-order statistics is sufficient for the complete solution
of the problem.

Both the Neumann series iteration and degenerate kerne: approxi-
mation were applied to the investigation of the propagation of waves
in a randomly space- and time-varying medium. Almost all the previous
work has used the so-called quasimonochromatic assumption which essen-
tially neglects the time variation of the medium. Such an assumption
has been avoided in this dissertation. To solve the problem, all the
stochastic quantities of the scalar wave equation are expressed by
ihei+ spectral representation and the equation i{s solved for the
spectral represe.tetion of the scalar wave function. From the spectral
representation of the scalar wave function, its power spectral density
and mutual coherence functions can be found. Both the Neumann series
expansion and the degenerate kernel approximation demonstrate the
spreading uf the power spectrum of the source by the time-varying
medium. In the Neumann series expansion, even the {irst-order

approximation shows the spreading of the power spectrum. Higher order
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approximations show further spreading of the power spectrum. The
successive convolution of the power spectrum of the source term with
the power spectrum of the random coefficient shows a further spread

of the power spectral density of the wave function, making the

correlation time of the wave function shorter. This agrees with the
intuitive concept that multiply-scattered waves become decorrelated.
The quasimonochromatic assumption does not show any spreading of the i
power spectrum.
Another interesting phenomenon is demonstrated by both methods
of solution. The first term of the solurion (zeroth approximation)

is the solution of the wave equation in the non-random medium. When

the next approximation is used, the wave function is a wide-sense

statiorary stochastic process (if the source and the stochastic medium
are wide-sense stationary processes). If the higher order approxima- |
tions are used, the solution contains, in addition to the wide-sense

stationary terms, terms which are no longer wide-sense stationary.

Thus the power spectral density must be expressed as a bifrequency
Fourier transform of the mutual! coherence function C(Rl,Rz,tl.tz).
The mutusl coherence tunction is written in the above form to show

that it is a function of the a~tuil obscrvation times, t and t

1 27 not

just the ditference ot the observation times. Becauvse of the close
relationship between the coherence tunction dnd optical images, one
would expect tluctusrion of the fmages which have been fcrmed from

light that ts prupagated through a randomly time-varying medium. Under
unfavorahle sstronon:cal observation covditions, twinkling and quivering
of the stellar images {s tndeed conmon. The existence of the nonsta

tionary mutual cobierence tunctions mav be expecied to be useful 1In
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studying nonstationary optical images. Up to now, almost nc work

has been done in studying the properties of the mutual coherence
functions in randomly time-varying media. The use of nonstationary
coherence functions may be useful in the investigation of the factors
which limit the performance of the optical and radio interferometers
and high gain arrays.

An interesting future area of work is development of the statis-
tical communication theory for multiplicative interference. Statistical
comnunication theory has been based almost completely on the assumption
that the interference has been added to the signal. This assumption
is clearly not valid wher one is working with rapidly fading signals
or with signals that have been scattered by randomly time-varying media.
Besides the usual additive noise, one has multiplicative noise. A
ugeful approach to communication, radar or sonar system design would
be to solve first the wave propagation problem through the stochastic
medium. Then, the solution could be used to design the optimum signals
and signal processor. The actual solution of the problem may be very
complicated and, for tractability, one probably would have tu base
the anslysis on the first approximation in the Neumann series expansion
in the same msnner ss was done here.

There are a number cf interesting applications of this work in
control system theory. The obvious ones 8re the cases where the
system parame’ers change randomly with time. For example, the center
of gravity or tne moment oif {nertias of a controlled vehiclie changes
due to motion ot fuel in tanks or due to a change ot opereting condi-
tions. The sensitivity analysis of contrcl systems can slso be based

on stochastic differential equation theory. It the sernsitivity of the
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controlled variable to the change of a certain parameter is to be
investigated, it may be assumed that thi{s parameter is a random
variable. Then, the stochastic differential equation is solved for
a desired statistical measure of the controlled variable or error
term. The solution is in terms cf the Green's function (impulse
response) of the system and the statistical measures of the random
parameter. This functional relation constitutes a solution to the
sensitivity problem. Incompletely identified control systems may
also be treated as stochastic systems. In such cases, statistical
measures of the system parameters are determined instead of a precise
analytical expression for the coefficients.

In addition to the application of stochastic operator theory to
control system and communication theory, it may be applied as a method
for investigating the stochastic medium {tself. For example, the sun
has been used as a source of random signals to investigate the propa-
gation of microwave signals through the atmosphere from the sun to
a8 receiver on the earth. Measurements ot this type are used to predict
the propagstion of signals between &n orbiting comewnication satellite
and a ground station. Mathematically, such a problem is completely
analogous to the wave propsgation problem considered here. Many other
examples of this type can be cited. Among these would be investigation
of plasmss by microwave and laser signals.

While a number of inferesting results have been obtained in this
dissertation, the work {s far trom being complete. Many useful and
interesting extensions can be suggested. Specific problems should
be worked out in great detafl to check the practical utility of the

computational methods. Problems should be realfstically selected so
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that the oumerical results can be c~mpared with the experimental results.
An example of this is an electromagnetic wave propagation problem. The
statistical measures of the medium's dielectric permittivity should be
determined experimentally or derived theoretically from the theory of
turbulence. Then, the wave equation should be solved for the statisti-
cal measure of interest, e.g., the mutual coherence function. Then, the
mut.al coherence function should be measured experimentally to check the
ability of the theory to predict physical phenomenon. The various ex-
perimental methods for measuring the mutual coherence function are
discussed in the I1EEE special issue on partial coherence, (1967) and by
Mendel and Wolf (1%65) in their review paper.

Experimental comparisons are also possible in control system
problems. A control systems problem could be solved by the methods of
Chapter 111, and the results could be compared with a hybrid computer
simulation. The stochastic coefticients of the differential equations
can be simulated by noise modulating the coefficient potentiometers of
the operational amplifiers in the analogue portion of the computer. In
such a2 retup, the snalogue part of the computer solves the stochastic
differential equation for a sample function {or realization) of the
dependent variable. Computstions sre repested for a large number of
times and each time ssmple solutions sre stored in the computer's
memory. Then, the desired statisticel mesasures, such as mean and
correlation function, are computed by the digital portion of the
computer from the stored sample solutions. Then the simulated results
may be compared with the results obtafned by efther of the two methods
in Chapter Il1. It may be expected thet the mathematical methods

developed in this dissertation would provide « systematic procedure for
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understanding and interpretation of the results which are obtained
in simulation of systems with stochastic parameters.

A number of generalizaticns and improvements to thie work can be
suggested. in the degenerate kernel method, it would be useful to
find methods other than the power series expansion for computation
of the statistical measures of the inverse matrix. Application of
nonlinear transformation _echniques may be useful in special cases.
If tractable compntational methods can be developed, the troublesome
convergence problem of the power series expansion can be avoided.
This would be especially valuable in the wave propagatiorn problem.

It is desirable to eliminate, in the wave propagation problem, the
agsumption that the dielecrric p .mittivity is a wide-sense stationary
stochastic process. & canonical integral expansion (Pugachev, 1965)
of the stochastic processes snould be used instead of the spectral
representation, which is a special case of integral expansions for

the wide-sense stationary stochastic processes. The solution with
nonstationary coefficients can be expected to be more difficult than
the wide-sense stationary case. since the familiar Fourier irsnsiorm
techniques are not oirectly applicable.

In Chapter 1V, propagatiocn of a scaler wave function in 8 stochas-
tic medium was considered An obvious generalization of this is the
sotution ot the stochastic vector wave eguation. The statistical
measure of interest in this cuse {6 the coherency matrix (Borm and
Wolf, 1964). The coherency matrix with elements in a cartesianr

coordinate system
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c&n be used to study the change of polarizatrion of a wave as it
propagates through a stochastic medium. It is conjectured that

the Green's dyadics (Levine and Schwinger, 1951; and Van Bladel, 196&)
can be used to “ind the statistical measures of the stochastic —eccor
wave equation. The mathematical manipulations with the Greer's dyadics
are more complicated than the use of ascalar Green's functions, but the
ge~eral procedure for constriction of stochastic Gree ‘s functions

{or possibly stochastic Green's dvads) would be analogous to the scalar
case. This problem would constitute & generalization of the stochastic

scaler wave equation solution to the stochastic vector case.
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